

Steve Suehring

Beginning Web
Development with Perl
From Novice to Professional

Beginning Web Development with Perl: From Novice to Professional

Copyright © 2006 by Steve Suehring

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-531-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: James Lee
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Managers: Laura Cheu, Richard Dal Porto
Copy Editors: Marilyn Smith, Nicole LeClerc
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: Lori Bring
Indexer: Rebecca Plunkett
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

PART 1 ■ ■ ■ CGI Development with Perl
■CHAPTER 1 The CGI Module. 3

■CHAPTER 2 Popular CGI Modules. 35

■CHAPTER 3 Databases and Perl . 49

■CHAPTER 4 System Interaction . 73

PART 2 ■ ■ ■ Internet Interaction with LWP and
Net:: Tools

■CHAPTER 5 LWP Modules . 89

■CHAPTER 6 Net:: Tools . 107

PART 3 ■ ■ ■ XML and RSS
■CHAPTER 7 SOAP-Based Web Services . 137

■CHAPTER 8 Perl and RSS . 153

■CHAPTER 9 XML Parsing with Perl . 165

PART 4 ■ ■ ■ Performance Enhancement with
mod_perl

■CHAPTER 10 Apache and mod_perl . 183

■CHAPTER 11 Development with mod_perl . 201

iii

PART 5 ■ ■ ■ Creating Web Templates
■CHAPTER 12 The Template Toolkit . 233

■CHAPTER 13 Perl Web Sites with Mason . 263

■APPENDIX Perl Basics . 283

■INDEX . 339

iv

Contents

About the Author . xiii

About the Technical Reviewer. xv

Acknowledgments . xvii

Introduction. xix

PART 1 ■ ■ ■ CGI Development with Perl
■CHAPTER 1 The CGI Module . 3

An Overview of CGI . 3

What You Need for This Chapter . 4

Hello World, CGI Style . 5

Function-Oriented Hello World. 5

Object-Oriented Hello World. 9

A Closer Look at the CGI.pm Functions . 11

HTML Shortcuts . 11

Dynamic Pages and Forms. 12

Cookies . 15

Environment Variables . 23

Viewing Environment Variables . 23

Carrying Values Between Forms . 24

Interaction with the System. 26

Debugging and Troubleshooting . 27

Verbose Output. 28

Syntax Check . 28

The Carp Module . 29

Other Troubleshooting Tips. 31

Security Considerations with CGI Programs . 31

File Permissions . 32

Taint Mode . 32

Strictness . 33

Untrusted Data from Forms . 33

Untrusted Data from Cookies. 34

Summary . 34

v

■CHAPTER 2 Popular CGI Modules. 35

Integration with Other Modules. 35

CGI::Carp . 35

URI::Escape. 39

Net::SMTP . 43

Mod_perl and HTML::Mason . 44

Interaction Based on Environment Variables. 45

Security Considerations with CGI Modules . 47

Summary . 47

■CHAPTER 3 Databases and Perl . 49

Interacting with a Database. 49

The DBI . 49

Database Drivers . 50

Data Source Names, Credentials, and Attributes 51

Database Handles . 52

Statement Handles . 53

Error Handling. 54

Using SQL Databases with the DBI. 55

Connecting to the Database. 56

Disconnecting from the Database. 57

Executing a Query . 57

Retrieving the Results . 58

Using the Quote Method for Dynamic Statements 61

Executing Other SQL Statements . 62

Binding Parameters . 62

Inserting Data into a Database . 63

Interacting with the Web . 65

Outputting to HTML . 65

Building HTML Tables . 67

Troubleshooting Database Interaction . 70

Security Considerations with Data Access . 70

Stored Credentials . 70

Unnecessary Privileges. 71

Unsanitized Statements and Input . 71

Summary . 71

■CONTENTSvi

■CHAPTER 4 System Interaction . 73

Perl Scripts and the Operating System . 73

Working with Filehandles . 73

Opening Filehandles . 74

Using die() to Trap Errors . 75

Reading from Filehandles. 75

Writing to Filehandles . 76

Closing Filehandles . 76

Using File Tests. 76

A Slight Aside: Directory Listings . 77

Uploading Files with CGI.pm . 77

Creating a File-Upload Field . 78

Accessing Uploading File Header Information 80

Protecting Temporary Files. 83

Working with System Processes. 83

Executing System Processes from a Perl Program 84

Using System Processes Within a CGI Program 85

Security Considerations with System Interaction. 85

Summary . 86

PART 2 ■ ■ ■ Internet Interaction with LWP
and Net:: Tools

■CHAPTER 5 LWP Modules . 89

Getting Started with the LWP. 89

HTTP from 29,999 Feet . 90

HTTP Requests . 91

HTTP Responses . 91

Keeping It Simple with LWP::Simple . 92

Get Functions . 93

The Head Function. 94

The Mirror Function . 95

Getting More Functionality with LWP::UserAgent. 96

Using the LWP . 97

Retrieving a Web Page . 97

Submitting a Web Form . 100

Handling Cookies . 101

Handling Password-Protected Sites . 101

■CONTENTS vii

Mirroring a Web Site . 102

Handling Proxies . 102

Removing HTML Tags from a Page . 103

Security Considerations with the LWP . 104

Summary . 105

■CHAPTER 6 Net:: Tools . 107

Checking E-Mail with Net::POP3. 107

Creating a POP3 Object . 108

Setting and Getting Other POP3 Connection Parameters 108

Checking E-Mail . 110

Deleting E-Mail and Quitting . 116

Checking E-Mail with Mail::Box . 117

Sending E-Mail with SMTP . 118

Creating an SMTP Object . 119

Setting Other SMTP Connection Parameters. 120

Sending a Message . 122

Checking DNS with Net::DNS . 125

Performing a Simple DNS Lookup. 125

Searching for MX Records . 127

Looking for the Authoritative DNS Servers . 127

Sending a Ping with Net::Ping. 128

Creating a Ping Object . 129

Sending an ICMP Echo Request . 130

Getting More Accurate Times. 131

Sending a TCP Check . 132

Security Considerations with Net:: Modules . 133

Summary . 133

PART 3 ■ ■ ■ XML and RSS
■CHAPTER 7 SOAP-Based Web Services . 137

A Quick SOAP Primer . 137

SOAP Meets Perl: SOAP::Lite . 139

Importing and Debugging SOAP:Lite . 139

Setting Up the SOAP Object . 140

Calling SOAP Methods . 142

Handling SOAP Errors . 144

Setting Types and Names. 145

■CONTENTSviii

Creating a SOAP Listener . 146

Consuming a SOAP Web Service . 148

Calling Your SOAP Server . 148

Calling the National Weather Service SOAP Service 149

Security Considerations with SOAP Web Services. 152

Summary . 152

■CHAPTER 8 Perl and RSS. 153

RSS: Versioning Fun . 153

Reading RSS with XML::RSS . 154

Parsing RSS Feeds. 155

Debugging RSS Scripts. 158

Writing RSS with XML::RSS . 159

Security Considerations with RSS . 162

Summary . 163

■CHAPTER 9 XML Parsing with Perl . 165

XML Parsing Methods. 165

XML Parsing Considerations . 166

Parsing XML with XML::Simple . 166

Data::Dumper . 168

XML::Simple Options. 170

Parsing XML with XML::SAX . 172

XML::SAX Parser Methods . 173

SAX2 Handler Interfaces. 173

A Basic Parser and Handler . 175

Using Tree-Based Parsing . 179

Security Considerations with XML Parsing . 180

Summary . 180

PART 4 ■ ■ ■ Performance Enhancement
with mod_perl

■CHAPTER 10 Apache and mod_perl . 183

How Apache Handles Requests . 183

Apache’s Child Processes. 184

Forking. 186

■CONTENTS ix

mod_cgi vs. mod_perl . 187

Benefits of mod_perl. 188

Drawbacks of mod_perl . 188

Beyond CGI Programming with mod_perl . 188

Apache::Registry vs. Apache::PerlRun . 189

mod_perl Installation . 193

Getting the Code . 193

Unpacking the Code . 194

Looking for Prerequisites . 194

Building and Installing mod_perl . 194

Choosing Compile Options . 198

Configuring for mod_perl . 198

From mod_cgi to mod_perl . 199

Security Considerations with mod_perl. 200

Summary . 200

■CHAPTER 11 Development with mod_perl . 201

Thinking in mod_perl . 201

Initial Considerations. 201

Apache::Registry vs. Apache::PerlRun, Revisited 202

Preloading Perl Modules. 207

Preloading Apache::DBI . 207

Preloading Other Modules and Methods . 209

Working with the Apache Request Object . 209

Accessing the Request . 210

Accessing the Response. 220

Working with Cookies . 222

Uploading Files . 225

Working with the Apache Server. 226

Getting Information About the Server . 226

Controlling Logging . 227

Security Considerations with mod_perl, Revisited 229

Summary . 230

PART 5 ■ ■ ■ Creating Web Templates
■CHAPTER 12 The Template Toolkit . 233

Perl and Templates . 233

Template Toolkit Introduction. 234

Template Toolkit Example. 234

Using the Template Toolkit . 235

■CONTENTSx

Template Toolkit Syntax . 240

Chomping . 241

Interpolation . 242

Comments. 242

Tag Styles . 243

Variables . 244

Virtual Methods . 246

Directives . 246

Plug-ins . 255

Building a Web Site with Template::Toolkit . 257

Creating a Site Configuration File . 257

Building the Site. 259

Security Considerations . 262

Summary . 262

■CHAPTER 13 Perl Web Sites with Mason . 263

Introducing Mason. 263

Installing Mason. 265

Compiling Mason . 265

Configuring Apache and Mason . 267

Mason Syntax. 269

Components . 270

Request Objects . 276

Handlers . 276

Subrequests and More . 278

Building a Web Site with Mason . 278

Building a Page . 278

Creating Headers and Footers . 279

Using Return Values. 280

Security Considerations with Mason . 281

Summary . 281

■APPENDIX Perl Basics . 283

Our First Perl Program . 283

Keywords. 284

Statements and Statement Blocks . 284

Escape Sequences . 284

White Space . 285

■CONTENTS xi

Types of Data . 285

Numbers . 285

Strings . 288

Here-Documents . 291

Converting Between Numbers and Strings . 292

Operators . 293

Numeric Operators . 293

String Operators. 302

Variables . 306

Modifying a Variable . 306

Operating and Assigning at Once . 308

Autoincrement and Autodecrement . 308

Multiple Assignments . 310

Scoping . 310

Variable Names . 313

Variable Interpolation . 313

The if Statement . 315

Operators Revisited . 316

Multiple Choice: if . . . else . 321

The unless Statement . 324

Expression Modifiers . 324

Using Short-Circuited Evaluation . 325

Looping Constructs . 326

The while Loop. 326

while (<STDIN>) . 327

Infinite Loops . 329

Looping Until. 329

The for Loop . 330

The foreach Loop . 330

do .. while and do .. until . 331

Loop Control Constructs . 333

Breaking Out. 333

Going On to the Next . 334

Reexecuting the Loop . 335

Loop Labels. 336

goto . 337

Summary . 338

■INDEX . 339

■CONTENTSxii

About the Author

■STEVE SUEHRING is a technology architect with a diverse set of skills. Steve works with a wide
array of technologies, from mainframe OS/390 to Microsoft Windows to several distributions
of Linux. Steve has written a book on MySQL, a book on Linux firewalls, and numerous maga-
zine articles. During his tenure as an editor for LinuxWorld Magazine, Steve focused on advocacy
of Linux and open-source software, as well as computer security. Among the articles Steve wrote
for LinuxWorld Magazine is a cover story featuring the WilliamsF1 team’s use of Linux to design
their Formula 1 car. Steve is also a Cisco Certified Network Professional (CCNP).

xiii

About the Technical Reviewer

■JAMES LEE is a hacker and open-source advocate based in Illinois. He
has a master’s degree from Northwestern University, where he can often
be seen rooting for the Wildcats during football season. The founder of
Onsight (http://www.onsight.com), he has worked as a programmer,
trainer, manager, writer, and open-source advocate. He is the coauthor of
the recently released Hacking Linux Exposed, Second Edition (Osbourne/
McGraw-Hill, 2002). He has also written a number of articles on Perl for
Linux Journal. Lee enjoys hacking Perl, developing software for the Web,
reading, traveling, and most of all playing with his kids, who are too
young to know why Dad’s favorite animals are penguins and camels.

xv

Acknowledgments

Thanks to James Lee for the excellent technical review assistance, and thanks to the entire
Apress staff. Thanks to Laura Lewin and Studio B. Many thanks to everyone who helped with
this or other projects that I’ve worked on, not only in 2005 but throughout the years. This list
is always difficult but should include Jim, John, Jer, Chris, Ron, Andy, Jay, Brian, Michael, Dan,
Justin, Sarah, AJ, Denise, Rob, Tim, Greg, Jeff, Aaron, Scott, Karla, Chad, Jess, Roman, Caele,
Makenna, Tony, Joe, Rebecca, Tom, Kevin, Keith, Brooke, Nick, Colin, Bob, Mary, Sue, Sandi,
Amy, Chris, Emily, Mike, Sandy, Ernie, Vera, Matthew, Kyle, Eric, Erich, Erin, Heather, Nate,
Brandon, Maya, Deb, Steve, Jaci, JJ, Dave, Sam, Ed, Mike, Al, Neil, Geddy, Alex, Bill, Pearl,
Moff, Duff, Jason, Mark, Michelle, Tara, Al, Spencer, Pat, Nicole, Jill, and everyone else that
I’m forgetting.

My hope is that by using mostly first names everyone will think that I’m thanking them
personally, and I am, of course.

xvii

Introduction

This is a book about Perl, the programming language. More specifically, this is a book about
some aspects of Perl interacting with the Internet. The book includes coverage of CGI through
the Perl CGI.pm module, as well as much additional information. You’ll explore such topics as
how to send e-mail from a Perl program through Net::SMTP, how to use Net::DNS, and even how
to use Net::Ping. You’ll learn how to build a templated web site two different ways, one with the
help of HTML::Mason and the other with the Template Toolkit. You’ll learn how to consume SOAP
web services, how to read and write RSS, and how to work with XML, all through Perl.

What This Book Covers
This book attempts to give readers who have learned some Perl a grasp of the concepts and
considerations for programming for the Web or creating a Perl program that interacts with the
network. This book is fairly Linux-centric. That’s not to say that these programs won’t run on
a Windows platform—they will, with very little tweaking.

The book is divided into five parts. The first part covers what comes to mind for many peo-
ple when they think of Perl and web development—namely, CGI development and database
interaction. The CGI module is examined, and I present tips for programming CGIs, such as the
Carp module for debugging. The second part of the book widens the focus into Internet inter-
action with Perl. The Net:: family of modules is covered, along with the LWP for retrieving web
pages through Perl. Coverage of XML and RSS make up the third part of the book, where you’ll
learn about XML parsing through Perl, consumption of SOAP web services, and RSS feeds. The
fourth part of the book looks at mod_perl for development. The fifth and final part of the book
examines templating through the Template Toolkit and HTML::Mason.

What You Should Know
To use this book successfully, you’ll need to know about Perl basics such as scalar variables,
arrays, and hashes; the use of control structures such as if/else, for, and while; and other
topics such as those you’d find in a book like Beginning Perl, Second Edition (Apress, 2004).
Essentially, you should be comfortable with Perl before reading this book. You should also
know how to install Perl modules, whether through your distribution’s mechanism, such as
apt for Debian, or through the use of CPAN. The book’s appendix is an excerpt from the
aforementioned Beginning Perl title. If you haven’t used Perl in a while, the appendix can
provide a good refresher into the language, but you’ll find that reading the entire Beginning
Perl book will be helpful to pick up where the appendix leaves off.

xix

This book will use Perl on a Linux system. The exact flavor of Linux isn’t important, though
I likely have some references to Debian. Perl being Perl means that the programs will run success-
fully with little modification on any system that can run Apache, including Microsoft Windows.

Why Apache?
Simply put, Apache works. Apache is overwhelmingly the most popular web server in use
on the Internet, according to the Netcraft survey (http://news.netcraft.com/archives/
web_server_survey.html). Apache is open source and configurable for just about any need.
Apache is stable and predictable, even under heavy load. Apache is robust, serving web with-
out using too many resources, and it’s able to use resources effectively to serve heavy traffic
loads.

This is not to say that Microsoft’s IIS hasn’t made good strides toward meeting its compe-
tition in Apache. IIS has indeed improved its stability with version 6, but with the benchmark
being IIS 5 and its predecessors, it didn’t take much to improve on the stability. However, IIS is
still not as good as Apache at serving web and has a long way to go before getting there.

■INTRODUCTIONxx

CGI Development
with Perl

P A R T 1

■ ■ ■

3

C H A P T E R 1

■ ■ ■

1. The surveys conducted by Netcraft (http://news.netcraft.com/archives/web_server_survey.html)
confirm this fact.

The CGI Module

The CGI module is central to web development with Perl. In fact, the CGI module is as far as
some people go with Perl web development. However, there’s more to Perl for the Web than
just CGI. You have endless ways to interact with the Internet from a Perl program. This book
will show you many of those methods. Even so, the CGI module is a good place to start.

In this chapter, you’ll learn the basics of Perl-based CGI application development, includ-
ing how to use both the function-oriented and object-oriented styles, some of the functions
offered by the CGI module, how to use environment variables, tips for debugging and trou-
bleshooting CGI applications, and the all-important security considerations. Let’s begin with
an introduction to CGI.

An Overview of CGI
CGI, or Common Gateway Interface, is a standard of communication between a web server
and a client, such as a user with a web browser. Over time, CGI has come to refer to a class of
programs that work with web servers. The programs themselves are considered to be external
or separate from the web servers, but they provide a gateway between the client and server—
thus the Gateway portion of the name Common Gateway Interface.

CGI is a standard unto itself. The current standard provides a common interface, which
means that CGI programs can be written in a number of languages. Of the languages with
which a CGI program can be written, Perl is arguably the most common.

Perl provides an easy-to-use syntax with a gently sloped learning curve. Yet Perl, along
with its myriad modules, is incredibly powerful and robust. The Apache web server, which is
usually run on Unix/Linux, continues to hold the dominant market share over all web servers
on the Internet.1 Perl is also very common on these same Unix/Linux systems. Being available
and powerful leads to the ubiquity of Perl for CGI development.

■Note If you’re unfamiliar with Perl, please flip to this book’s appendix for an overview of the language. In
that appendix, you’ll find excerpts from Beginning Perl, Second Edition by James Lee (Apress, 2004). I rec-
ommend picking up a copy of Beginning Perl for a full introduction to the language.

CHAPTER 1 ■ THE CGI MODULE4

For quite a long time (in Internet time), CGIs were frequently developed with help from
a library called cgi-lib.pl. The CGI library, or cgi-lib, was a function-oriented way to sim-
plify development of CGI programs in Perl. A developer could use the common functions of
the library, rather than needing to rewrite those functions from scratch. The cgi-lib also
enabled developers with less experience to write very powerful applications to interact with
the Web.

As the Internet grew, so did the needs of Perl-based CGI developers. The CGI module,
referred to as CGI.pm after the name of the module file itself, gives developers a very powerful
interface to common CGI writing tasks. CGI.pm became available with Perl 5.

CGI.pm can be used both in the function-oriented approach of cgi-lib and also in an
object-oriented fashion, allowing developers to use more than one CGI object within their
program. The main difference between the two approaches is the way in which you call
methods. With the function-oriented approach, you must call each method during the dec-
laration of the CGI module. The object-oriented approach makes these methods available
to you, regardless of whether you explicitly specify that they should be included in the pro-
gram beforehand.

When using the CGI module in a function-oriented fashion, you can choose to import only
the individual methods that you’ll be using, or you can import just those functions within pre-
defined logical groupings of methods. CGI.pm currently has several such groupings, as shown in
Table 1-1. You’ll see how to use these methods later in the chapter.

Table 1-1. CGI.pm Method Groupings

Group Description

:all Contains all of the methods available in the CGI.pm module

:cgi Contains methods specific to the CGI protocol

:form Contains methods used to generate forms

:html A superset of the :html2, :html3, :html4, and :netscape groups

:html2 Contains methods that enable the developer to quickly use elements from the
HTML version 2 specification

:html3 Like the :html2 group, contains methods that enable the developer to quickly
use elements from the HTML version 3 specification

:html4 Contains methods that enable the developer to quickly use elements from the
HTML version 4 specification

:netscape Contains the Netscape extensions for the HTML 3 specification, including
a shortcut to my favorite HTML tag <BLINK>

:multipart Contains methods used to help work with MIME types

:standard Probably the most frequently used group of methods, a superset of the :html2,
:html3, :html4, :form, and :cgi groups

What You Need for This Chapter
The examples in this chapter use version 3.04 of CGI.pm on a Linux-based Apache (version 1.3.N)
server. Even though Apache 2 has been released, the 1.3 branch is stable and quite common as
of this writing. The 1.3 branch is also easier to work with for beginners, making it a good choice

CHAPTER 1 ■ THE CGI MODULE 5

2. For more information about setting up Apache for CGI, see the Apache documentation at
http://httpd.apache.org/docs/howto/cgi.html.

3. Now, if I could only remember why I created that symbolic link back in 2002. The joys of system
administration on a long-lived system never cease to amaze.

for this book. However, the routines in this chapter should work on many different versions of
Apache or another CGI-compliant web server, and with different versions of the CGI.pm mod-
ule as well. You can always obtain the latest version of CGI.pm from http://search.cpan.org/
dist/CGI.pm/.

You’ll also need to be able to execute CGI programs on your web server of choice. For
example, on an Apache server, you would need a directive such as this:

Options ExecCGI

Any CGI testing performed must be done from a directory that has the ExecCGI option
enabled in Apache.2

Although it’s obvious (I hope), I’ll point out that you’ll need Perl on your system. You’ll
also need to know where Perl is located on the system. Perl is usually located in /usr/bin, but
it’s sometimes found in /usr/local/bin or elsewhere. When in doubt, use the which command
to find the Perl interpreter:

% which perl

The system will respond with the first instance of Perl in its search path. In this case, my
system happened to respond with this:

/usr/local/bin/perl

This was somewhat confusing to me, since I know that Perl is installed on this system in
/usr/bin/perl as well. Looking at /usr/local/bin/perl revealed that it’s merely a symbolic
link3 to the real Perl in /usr/bin:

% ls -la /usr/local/bin/perl
lrwxrwxrwx 1 root staff 13 Feb 24 2002 /usr/local/bin/perl -> /usr/bin/perl

Hello World, CGI Style
Before going too far, and to assist in testing your CGI environment, the requisite “Hello World”
example is now provided. I’ll show you how to create this example using both the function-
oriented approach and the object-oriented approach, to highlight the basic differences
between the two methods.

Function-Oriented Hello World
As I stated previously, the function-oriented method requires that the developer explicitly call
or import the desired functions into their program. This is sometimes done by importing the
method groups rather than the individual methods themselves. Recall the method groups
listed in Table 1-1.

CHAPTER 1 ■ THE CGI MODULE6

The most common method grouping that I’ve seen used in practice is the :standard
group. This method group contains the most frequently used methods, including those that
make it easy to create and use of web forms, as well as the HTML that surrounds those forms.
You’ll use the :standard group in this first Hello World example.

■Caution New developers may be tempted to use the :all group of methods in CGI.pm. However, doing
so can create a security risk, since unnecessary methods are imported into your namespace. It's a good idea
to use only those methods that are necessary for the functionality of your program. The :standard group
provides a good compromise in the never-ending battle between security and complexity.

Creating the Script
The function-oriented method of CGI development allows you to rapidly develop small CGI
scripts. Using the function-oriented method, the individual methods within the script can be
called directly, rather than creating an object through which to call the methods, which can
add overhead during development. This makes creation of the first script rather trivial, but it
should give you a taste for a few of the functions involved when developing a CGI. The code in
Listing 1-1 shows a Hello World script written using the function-oriented approach.

Listing 1-1. Hello World in Function-Oriented Fashion

#!/usr/bin/perl -T

use strict;
use CGI ':standard';

print header;
print start_html('Hello World');
print h1('Hello World');
print end_html();

exit;

You can place this code in your favorite text editor and save it to a location defined to
run CGI scripts within your web server. For example, I saved this script as hello.cgi in the
directory /usr/lib/cgi-bin on a server running Debian 3.0.

Don’t forget that the CGI will need the correct permissions in order to run. This can usually
be accomplished with the chmod 755 <scriptname.cgi> command:

chmod 755 /usr/lib/cgi-bin/hello.cgi

To view the code in a web browser, point the browser to the URL of the CGI script. For
example, my script is on a server at the IP address 192.168.1.10. Combining the server address
plus the aliased script location results in the following URL:

http://192.168.1.10/cgi-bin/hello.cgi

CHAPTER 1 ■ THE CGI MODULE 7

Obviously, the URL for your server will likely vary from this example. If all goes well, you
should see a page similar to that in Figure 1-1. If all doesn’t go well, skip ahead to the “Debug-
ging and Troubleshooting” section of this chapter.

That’s all there is to programming your first CGI script. Of course, if that’s all there truly
were to the Perl CGI module, this book wouldn’t be as thick. In the upcoming chapters, I’ll
expand on the CGI module to show you how to use it to interact with web forms and build
applications.

Reviewing the Code
In Listing 1-1, you see the standard invocation of the perl interpreter #!/usr/bin/perl. How-
ever, there is also a -T option added to the invocation:

#!/usr/bin/perl -T

Refer to the “Security Considerations with CGI Programs” section later in this chapter for
more information about the -T option. For now, just be happy that it’s there.

The next line of code enables strict checking for the script:

use strict;

Like the -T option, the strict directive has to do with security, and it’s explained in “Secu-
rity Considerations with CGI Programs” section later in this chapter. This line will show up in
every script in this chapter.

Following use strict; is the code that actually calls the CGI.pm module, and more specifi-
cally, calls the :standard method group of the CGI.pm module.

Figure 1-1. The Hello World example viewed in a web browser

use CGI ':standard';

You may see this method group call made using the qw() operator, like this:

use CGI qw(:standard);

or

use CGI qw/:standard/;

The qw() operator is a quote operator that separates the given string into individual ele-
ments based on white space. All of these calls (and others using qw) are valid and essentially
result in the same thing, which is the :standard method group being called. Perl has a num-
ber of quote and quote-like characters, aside from qw(). For more information about these,
and all of the other Perl operators, see the perlop documentation (http://perldoc.perl.org/
perlop.html).

Four functions of the CGI module are used in this script, as shown here:

print header;
print start_html('Hello World');
print h1('Hello World');
print end_html();

The first function, header(), sends the Content-Type to the browser. In this instance, the
header() function is equivalent to using this bit of code in the script (see Chapter 5 for more
information about the Content-Type and why the extra newline is present):

print "Content-Type: text/html\n\n";

The header() function can also be used for other HTTP headers, such as cookies.
The next CGI function used is start_html(). This function begins the HTML portion of

the page with elements like <title>, <html>, <head>, and so on. In this instance, the script calls
the start_html() function with a string parameter 'Hello World'. As you saw in Figure 1-1,
this parameter was placed into the title bar of the web browser.

Another CGI function called in this script is h1(). This function places an <h1> element
around its parameter. In this case, the parameter passed is 'Hello World', and as you saw
from the results in Figure 1-1, the phrase “Hello World” was indeed given <h1> size. Finally,
the end_html() function is called to provide the </body> and </html> closing tags.

The code in the example uses a semicolon (;) to end each line and then another print
statement to begin the next line. This was done to make the code easier to read. However, it’s
quite common to use a comma in place of the semicolon when programming a CGI applica-
tion, so the code would look like this:

#!/usr/bin/perl -T

use strict;
use CGI ':standard';

print header,
start_html('Hello World'),

CHAPTER 1 ■ THE CGI MODULE8

CHAPTER 1 ■ THE CGI MODULE 9

h1('Hello World'),
end_html();

exit;

This code is functionally equivalent to the form in Listing 1-1, but it does save some
keystrokes.

Object-Oriented Hello World
When programming CGI applications in object-oriented fashion, you must instantiate a new
CGI object. This effectively means that you can use multiple CGI objects within the program.

Creating the Script
The object-oriented Hello World script, presented in Listing 1-2, uses only one CGI object. In
fact, it’s not all that common to use more than one CGI object within most CGI programs.

Listing 1-2. Hello World in Object-Oriented Fashion

#!/usr/bin/perl -T

use strict;
use CGI;

my $cgi = new CGI;

print $cgi->header;
print $cgi->start_html('Hello World');
print $cgi->h1('Hello World');
print $cgi->end_html();

exit;

Like the code in the function-oriented example, you can place Listing 1-2 in your favorite
text editor and save it to a location defined to run CGI scripts within your web server. For exam-
ple, I saved this script as hello-oo.cgi (the oo stands for object-oriented—how clever) into the
directory /usr/lib/cgi-bin on a server running Debian 3.0. Again, remember that the CGI will
need the correct permissions in order to run, which is usually accomplished with the chmod 755
<scriptname.cgi> command, as in this example:

chmod 755 /usr/lib/cgi-bin/hello-oo.cgi

To view the code in a web browser, point your browser to the URL of the CGI script, as in
this example, for my server with the IP address 192.168.1.10:

http://192.168.1.10/cgi-bin/hello-oo.cgi

You should see a page similar to that in Figure 1-2. Again, see the “Debugging and Trou-
bleshooting” section later in this chapter if you have problems with the script.

Reviewing the Code
If you think that the code for hello-oo.cgi looks eerily similar to the hello.cgi code, you’re
right. The key differences are in how the functions within the CGI module are called in this
version.

Recall that in the function-oriented example, the program calls a method grouping,
:standard, on the use CGI line. With the object-oriented model, that call is not necessary.
Thus, the line is simply written like this:

use CGI;

The next line is new to the object-oriented approach and is responsible for instantiating
the CGI object so that you can call methods within it later. This line of code creates a CGI
object called $cgi:

my $cgi = new CGI;

Note that the script could have used any scalar variable name instead of $cgi. Many
examples use $q as a variable name for this CGI object.

The four CGI functions are called next. Notice that these calls look different from the ones
in the function-oriented version.

print $cgi->header;
print $cgi->start_html('Hello World');
print $cgi->h1('Hello World');
print $cgi->end_html();

CHAPTER 1 ■ THE CGI MODULE10

Figure 1-2. The object-oriented Hello World example viewed in a web browser

CHAPTER 1 ■ THE CGI MODULE 11

Each instance of a function call must be called through the CGI object ($cgi) created ear-
lier. Attempting to call one of these functions without qualifying it through the $cgi object will
result in an Internal Server Error message.

As with the example in Listing 1-1, the code in the example uses the semicolon format,
but the comma format is acceptable and common. In that format, the code looks like this:

#!/usr/bin/perl -T

use strict;
use CGI;

my $cgi = new CGI;

print $cgi->header,
$cgi->start_html('Hello World'),
$cgi->h1('Hello World'),
$cgi->end_html();

exit;

A Closer Look at the CGI.pm Functions
The CGI module has a large number of functions to make the life of the programmer easier.
These functions range from those that create HTML tags, HTTP headers, and cookies to those
for working with web forms. This section looks at some of the most commonly used functions.

HTML Shortcuts
The HTML functions within the CGI module save time and make the code look cleaner. With-
out the HTML functions, a CGI program would be forced to include bits of HTML interspersed
with Perl, read in external files with HTML, or (more commonly) use a combination of these
techniques. This makes the code much more difficult to troubleshoot and debug.

Most of the HTML version 3 and 4 tags are available through a function in the CGI mod-
ule. Simply calling the HTML function with a print statement will cause it to be sent to the
outputted page. Recall the Hello World examples in Listings 1-1 and 1-2. These examples use
the h1() function to create an <h1></h1> HTML tag around the phrase “Hello World.” Viewing
the source from the resulting page shows this HTML:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html

PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head><title>Hello World</title>
</head><body><h1>Hello World</h1></body></html>

The CGI module functions will usually create both the starting and ending HTML tags.
However, should you wish to manually create these tags, you can do so by calling the function
with start_ or end_ prepended, as in this example:

print start_h1;
print "This is some text";
print end_h1;

This code produces an opening <h1> tag followed by some text and then a closing </h1>
tag. See the CGI module documentation (type perldoc CGI from a terminal window) for more
information about HTML element generation.

You can also define your own functions for HTML tags. This allows you to define and call
HTML tags that aren’t already provided for within the CGI module. For example, suppose that
a new HTML tag called <snow> is available in a certain browser, and you want to use it within
your CGI program. You only need to define the function, like so:

use CGI qw/:standard snow/

Then you can call it in the same way that you would call any other HTML function:

print snow('Fall');

The resulting HTML looks like this:

<snow>Fall</snow>

Dynamic Pages and Forms
Just as standard HTML elements are available through functions in the CGI module, so are
form elements. For example, tags to start and end forms, code for text fields and other input
fields, and code for buttons are available as CGI module functions. The syntax for these func-
tions is the same as the syntax for calling HTML tag functions. Consider the code shown in
Listing 1-3.

Listing 1-3. Code to Accept Input with the CGI Module

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

print header,
start_html('Hello'),
start_form,
"Enter your name: ",textfield('name'),
submit,
end_form,
hr,
end_html;

exit;

CHAPTER 1 ■ THE CGI MODULE12

CHAPTER 1 ■ THE CGI MODULE 13

When the code is saved to a web server and viewed through a browser, it should look like
Figure 1-3. It looks like a regular form, but don’t bother filling in the name and clicking on sub-
mit yet. There’s no code to handle it!

Viewing the source code for the resulting HTML page reveals what this bit of Perl code did
in the background:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
"http://www.w3.org/TR/xhtml-basic/xhtml-basic10.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US"><head><title>Hello</title>
</head><body><form method="post" action="/cgi-bin/name.cgi"
enctype="application/x-www-form-urlencoded">
Enter your name: <input type="text" name="name" />
<input type="submit" name=".submit" /></form></body></html>

As you can see, the start_form() function inserted a <form> tag into the page. It automati-
cally made the method a POST and set the action to itself—"/cgi-bin/name.cgi", in this case. You
could change both of these parameters by providing them within the call to the start_form()
function, as in this example:

start_form(-method=>'GET',-action=>"/cgi-bin/someothercgi.cgi")

The code would then produce a form tag like this:

Figure 1-3. A form created with CGI module functions

CHAPTER 1 ■ THE CGI MODULE14

<form method="get" action="/cgi-bin/someothercgi"
enctype="application/x-www-form-urlencoded">

However, for this example, leave the form method and action at their defaults (POST and
/cgi-bin/name.cgi).

Making the form actually perform some action means that you need to handle parame-
ters within the program. To do so, you can simply check whether the param() function returns
true.

if (param()) {
#do something
}

Listing 1-4 shows a more complete function added to the code shown in Listing 1-3.

Listing 1-4. Printing the Name Input Using the CGI Module

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

print header,
start_html('Hello'),
start_form,
"Enter your name: ",textfield('name'),
submit,
end_form,
hr;

if (param()) {
print "Hello ",
param('name'),
p;

}

print end_html;

exit;

■Tip The basic if (param()) type of check is commonly used to determine whether to serve the default
page or whether to process the CGI parameters. For example, if there are parameters within param(), then
the CGI will output “Hello,” along with the value that was filled in for the text field that is contained in
param('name').

CHAPTER 1 ■ THE CGI MODULE 15

Update your code on the web server with this new code. Don’t forget to click the refresh
button in your web browser to ensure that you have the new code within your version of the
page. If you fail to reload the page after saving the new code, you won’t get the same results as
the rest of us.

Now you can fill in your name and click the Submit Query button. If your name is Steve,
you’ll see the output shown in Figure 1-4.

Cookies
Cookies are tokens or data sent in the HTTP header. Cookies sometimes reside in volatile
memory for the duration of the browser setting and can also be saved as persistent text files
on the user’s computer. You can use cookies for many reasons, including carrying information
about users to enhance their browsing experience. Cookies offer a very useful way to maintain
state between visits or during a session.

■Caution Cookies are often overused and relied upon unnecessarily. Additionally, some users overestimate
the risks of allowing cookies and misunderstand the privacy concerns related to their use. For these reasons,
some users will disable cookies in their browsers. Therefore, you shouldn’t design an application that relies
on cookies for session state or other client-side settings.

The CGI module includes powerful functions to assist in creating and managing browser
cookies. Here, I’ll show you some examples. But first, let’s see what goes into a cookie. (I find it
difficult to resist clever but overdone metaphors when writing about cookies; therefore, I’ll
apologize in advance for some of the titles of the forthcoming sections.)

Figure 1-4. Printing the name based on what was submitted

CHAPTER 1 ■ THE CGI MODULE16

Cookie Ingredients
Cookies consist of up to the following six parameters:

• Name: This is the name of the cookie itself and is the only required parameter for
a cookie.

• Value: The value of a cookie is an optional item that contains the object or subject of
the cookie. In other words, if you have a cookie with a name of sessionid, the value for
that sessionid might be 515093028943.

• Domain: The domain parameter refers to the Internet domain within which the
cookie is valid. Cookies are valid only within the domain in which they are set. For
example, as an operator of example.com, you cannot read cookies that are tied to the
domain example.net.

• Secure: The secure parameter refers to whether or not the cookie will be transmitted
over an unsecure connection; that is, a connection that doesn’t use SSL. The default for
this parameter is off, meaning that cookies can be transmitted over SSL and non-SSL
connections alike.

• Path: The path parameter further refines the area of the domain in which the cookie
is valid. For example, a cookie with a path of /shoppingcart will be sent only to
pages below /shoppingcart within the domain. That cookie would be sent to
http://www.example.com/shoppingcart/checkout.cgi, but would not be sent to
http://www.example.com/index.html, since index.html is not hierarchically below
the /shoppingcart path in the URL.

• Expiration date: The expiration date is the time at which the cookie will no longer be
valid. If no expiration date is set, or—and this is important—if the expiration date is set
incorrectly, the cookie will expire at the close of the browser session. Some browsers
won’t accept the cookie at all if the expiration date is not set correctly. The format for
the expiration date is specific and is as follows: Weekday, DD-MM-YYYY HH:MM:SS GMT.

■Tip To clear a cookie, it's usually sufficient to set the value to null, or "".

Cookie Limitations
The following are some inherent limitations set by the cookie standard itself:

• A 4KB total size for any single cookie

• A total of 300 cookies stored by a browser

• A total of 20 cookies for any given server or domain

While some of these limitations are merely recommendations, it’s a good idea to keep
these in mind when working with cookies. In addition, although not required, it is recom-
mended that elements within a cookie be properly encoded. Usually, this means escaping

CHAPTER 1 ■ THE CGI MODULE 17

reserved characters into their hex equivalents. For instance, a single space in the cookie would
be represented as %20.

Sampling the Cookies
Setting up your computer to test cookies means configuring your web browser to prompt when
a cookie is received. You set up prompting on cookie receipt through the options or preferences
within your browser of choice. Doing so will cause a dialog box to be displayed when a cookie is
received. This is quite an annoyance for general browsing, but it is very helpful when working
with cookies to ensure that the cookies are being set with the correct parameters.

Baking Cookies by Hand
Cookies get set as part of the header. You can set cookies without the use of the CGI module,
just as you can accomplish any of the tasks of writing a Perl-based CGI application without the
CGI module. To send a cookie to the browser, you need to create a program to output the nec-
essary elements. This is as simple as the code shown in Listing 1-5.

Listing 1-5. A Simple Cookie Example

#!/usr/bin/perl -T

use strict;

print "Content-type: text/html\n";
print "Set-Cookie: testcookie=testvalue;";
print "\n\n";
print "You've received a cookie<p>\n";

exit;

If you have prompting for cookies enabled in your browser (as recommended in the pre-
vious section), pointing the browser to this code on the server results in a dialog box similar to
that in Figure 1-5. You can see the cookie is being set with a name of testcookie and a value of
testvalue. The cookie will expire at the end of the session, since no expiration date parameter
was included in the cookie.

Figure 1-5. The cookie being set

CHAPTER 1 ■ THE CGI MODULE18

Baking Cookies with CGI.pm
As you’ve seen, setting cookies by hand isn’t the most difficult thing to do, yet the CGI module
makes it even easier, especially in the area of setting the expiration date. Cookie functions are
included within the :standard method group of the CGI module.

Just as with the manual method for sending cookies to the browser, you need to output
the necessary elements when using the CGI module. Listing 1-6 shows how to re-create the
simple cookie set in Listing 1-5 using the CGI module.

Listing 1-6. A Simple Cookie Example Using the CGI Module

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $cookie = cookie(-name=>'testcookie',-value=>'testvalue');
print header (-cookie=>$cookie);
print "You've received a cookie<p>\n";

exit;

Notice that in Listing 1-5, the path for the cookie was set to /cgi-bin/, or the directory
from which the program was run. However, in Listing 1-6, the path is set to /, or the root of the
site from which the program is run. Since the path is not set explicitly, the default for the mod-
ule will be used, with the result being the root directory set for the path.

As with the manual example, you can view this code from the server through a browser
with cookie prompting enabled to see the cookie contents as the cookie is being set.

Consuming Cookies
You’ve now seen how to set simple cookies in browsers both by hand and by using the CGI
module. It might be nice to find out how to actually read those cookies back into your program.

Cookies are sent as part of the request header and can be accessed as an environment
variable. As you’ve probably come to expect, the CGI module also includes a built-in func-
tion for cookie retrieval. You just call the cookie() function with the name of the cookie as
an argument. Listing 1-7 shows the code to retrieve the cookie named testcookie (created
in Listing 1-6).

Listing 1-7. Retrieving Cookies

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $retrievedcookie = cookie('testcookie');

CHAPTER 1 ■ THE CGI MODULE 19

print header,
start_html,
p("You sent a cookie and its value was $retrievedcookie\n"),
end_html;

exit;

But note that since the cookie set in Listing 1-6 didn’t have an expiration date set, if you've
closed your browser, the cookie will be gone, and this example won’t work!

Setting Cookie Expiration
As I just noted, because the cookie created in Listing 1-6 contained only a name and a value
parameter, it expired when the browser session closed. When you set an expiration date for
a cookie, the cookie will be available on the user’s computer until the expiration date, which
means that it will be available when she visits your application until that date, regardless of
whether or not she closed the browser. However, the format for the expiration date is very
specific, and if formatted incorrectly may cause the cookie to expire at the end of the session
or not be set at all!

Assume that you want to set an expiration date seven days in the future. Without the help
of the CGI module, you would first have to figure out the current date, then add seven days to
it, and then format the string in the correct format for the cookie’s expiration date parameter.
The code might look something like Listing 1-8.

Listing 1-8. Setting Cookie Expiration Without Using the CGI Module

#!/usr/bin/perl -T

use strict;

my @monthnames = qw/Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec/;
my @weekdays = qw/Sunday Monday Tuesday Wednesday Thursday Friday Saturday/;

my $nextweek = time+604800;

my ($sec,$min,$hour,$mday,$mon,$year,$dayname,$dayofyear) = gmtime($nextweek);
$year += 1900;

print "Content-type: text/html\n";
print "Set-Cookie: testcookie=testcookievalue;";
printf ("expires=%s, %02d-%s-%d %02d:%02d:%02d GMT",$weekdays[$dayname],$mday,➥

$monthnames[$mon],$year,$hour,$min,$sec);
print "\n\n";
print "You've received a cookie<p>\n";

exit;

CHAPTER 1 ■ THE CGI MODULE20

■Note There are certainly other valid methods for performing this operation, setting the date, and setting
the expiration date. However, it's not very common to set a cookie expiration manually. Instead, it's much
more likely that you'll be using the CGI module for this purpose.

On the other hand, the CGI module makes setting the expiration date rather easy. Instead
of having to worry about the format or calculate the date in the future, you can simply call the
expires() function of the cookie method with an argument indicating when the cookie will
expire. Listing 1-9 shows an example that sets the same expiration date as Listing 1-8.

Listing 1-9. Setting Cookie Expiration Using the CGI Module

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $cookie = cookie(-name=>'testcookie',value=>'testcookievalue',-expires=>'+7d');
print header (-cookie=>$cookie),
start_html('CGI Cookie Test'),
p("You've received a cookie\n"),
end_html;

exit;

Notice first that the code is much, much simpler. You don’t need to set the month names,
get the date in a week’s time, or format the date correctly. Notice also that the only difference
in this code from the code in Listing 1-6 is that the code for the expiration date has been
added:

my $cookie = cookie(-name=>'testcookie',value=>'testcookievalue',-expires=>'+7d');

Using this syntax, you can expire a cookie with just about any given time period. The time
periods for cookie expiration are shown in Table 1-2.

Table 1-2. Time Period Abbreviations for the CGI Module’s Header and Cookie Functions

Abbreviation Definition Example

d Days +1d (expire 1 day from now)

h Hours +8h (expire 8 hours from now)

M Months +1M (expire 1 month from now)

m Minutes -1m (expire immediately)

now Immediately now (expire immediately)

s Seconds +30s (expire 30 seconds from now)

y Years +1y (expire 1 year from now)

CHAPTER 1 ■ THE CGI MODULE 21

Setting Multiple Cookies
You may find that one cookie isn’t sufficient for your application. In that case, you have two
primary solutions:

• You could simply set multiple cookies, each corresponding to a different setting or pref-
erence. This method works well for a few cookies, but remember that there’s a limit of
20 cookies per domain.

• If the application has a large number of cookies, a better solution is to create a session
ID, store that session ID in a database, and tie that database into the settings and pref-
erences that need to be stored for the application.

Storing a session ID in a database has the advantage of giving your application virtually
unlimited settings that it can store in the background, since only one cookie is sent to the
browser. Also, since only one cookie is sent to the browser, you will save bandwidth, thus
making the site seem quicker to the user. Granted, this is less important for LAN-based
applications, but any savings of bandwidth are good savings. This section shows how to set
and read multiple cookies using the CGI module.

You can send multiple cookies to the browser by first creating the cookies, as you’ve done,
and then passing the cookies as an array reference to the cookie() function. Listing 1-10
shows an example.

Listing 1-10. Sending Multiple Cookies Using CGI.pm

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $cookie1 = cookie(-name=>'testcookie',value=>'testcookievalue',expires=>'+7d');
my $cookie2 = cookie(-name=>'secondcookie',value=>'secondcookievalue',➥

expires=>'+1d');
print header (-cookie=>[$cookie1,$cookie2]),
start_html('CGI Cookie Test'),
p("You've received a cookie\n"),
end_html;

exit;

This code has only two differences from the code in Listing 1-9:

my $cookie2 = cookie(-name=>'secondcookie',value=>'secondcookievalue',➥

expires=>'+1d');
print header (-cookie=>[$cookie1,$cookie2]),

The first line creates a scalar containing a cookie with a name of secondcookie, a value of
secondcookievalue, and an expiration of one day into the future. Notice that the expiration
of $cookie2 is different from that of the other cookie in this example.

CHAPTER 1 ■ THE CGI MODULE22

The second line of code looks strikingly similar to the call to the header() function from
previous examples. Notice that this time, the call is setting two cookies, separated by a comma,
within a set of brackets, which you’ll recognize as an anonymous array. As you might come to
expect by now, trying to accomplish this same task without the help of the CGI module is possi-
ble but much more time-consuming.

Reading the values from multiple cookies calls for the same process as reading one cookie
(shown earlier in Listing 1-7), except that you read all of them! Listing 1-11 shows the code to
read both of the cookies sent by the example in Listing 1-10.

Listing 1-11. Retrieving Multiple Cookies

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $retrievedcookie1 = cookie('testcookie');
my $retrievedcookie2 = cookie('secondcookie');

print header,
start_html,
p("You sent a couple cookies and their values were $retrievedcookie1 and ➥

$retrievedcookie2\n"),
end_html;

exit;

This code has only two changes from the code to retrieve one cookie. One is the addition
to create a scalar to retrieve the second cookie:

my $retrievedcookie2 = cookie('secondcookie');

And the other to print the results to the resulting web page:

p("You sent a couple cookies and their values were $retrievedcookie1 and ➥

$retrievedcookie2\n"),

Setting the Secure Flag
Setting the secure flag in a cookie makes that cookie readable only if done so over an SSL con-
nection (using HTTPS). This is useful if your cookie will be used to store personal information
(which I wouldn’t generally recommend for anything but a few applications, and then only if
the cookie is a session cookie and not a cookie to be stored on a hard drive).

CHAPTER 1 ■ THE CGI MODULE 23

You set the secure flag as another argument within the call to the cookie function, as in
this example:

cookie(-name=>'cookiename',-value=>'cookievalue',-secure=>1);

Note that if you don’t have an SSL-enabled web server, you won’t be able to test the secure
flag.

Environment Variables
Environment variables are values set by the environment where a process runs. In the case of
a CGI script, the environment variables are set by the web server on which they run. These
variables are automatically made available to your CGI script in the form of the %ENV hash.

Viewing Environment Variables
The script shown in Listing 1-12 makes it possible to view the environment variables available
to a CGI script on your web server.

Listing 1-12. Viewing Environment Variables in a CGI Script

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

print header,
start_html('Environment Variables');
foreach my $variable (keys %ENV) {
print p("$variable is $ENV{$variable}");

}
print end_html;

exit;

The only new items in this script are the three lines of the foreach loop, which is a stan-
dard Perl construct. Saving this script to your web server and accessing it through a browser
will result in a page similar to that in Figure 1-6.

Some of the environment variables sent to your script by the web server are the result of
settings on the server itself; others are sent from the server as read by the browser accessing
the script. One environment variable is HTTP_USER_AGENT. This environment variable is some-
times used (and misused) to determine the browser software and version accessing the page.
Chapter 2 examines the use of HTTP_USER_AGENT to present a page based on the value of the
variable.

CHAPTER 1 ■ THE CGI MODULE24

Carrying Values Between Forms
The ability to carry values between pages or forms within your application is key for all but the
simplest of CGI programs. Earlier in the chapter, you saw how cookies might be used to carry
values between forms. Here, I’ll show you how to use the form itself to carry these values.

Figure 1-6. Environment variables in a web session

CHAPTER 1 ■ THE CGI MODULE 25

■Caution Values carried between pages through form variables—hidden or not, over SSL or not—can
be faked, forged, or otherwise altered. Therefore, it is imperative that you do not rely on the data passed
between forms, nor should you consider the data to be legitimate until you can check it for validity. More
than one web site has been hacked this way. For example, customers have altered prices for products, and
then ordered those products at that price. Always assume that data is invalid until proven otherwise.

Earlier, in Listing 1-4, you saw an example of how to accept a form value for a name
and then respond with a message when the name is submitted. That code can be consid-
ered a simple two-page application. The first page presents the user with the text box, and
the second page takes that result and performs an action, which is to send output to the
browser. Now, assume that you want to create a third (and fourth, fifth, and so on) page,
with each carrying over the values from the previous page. To do so, you need to make the
second page present the user with another form for additional input. Listing 1-13 expands
on the earlier example to ask the user for his favorite color and then presents the third
page, based on the result.

Listing 1-13. Values Carried Between Pages

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

print header;

if (param('color')) {
print start_html('Hello'),
"Hello ", param('name'),p,
"Your favorite color is: ",param('color'),p,
hr;

}
elsif (param('name')) {
print start_html('Hello'),
"Hello ",
param('name'),
p,
start_form,
"Please enter your favorite color: ",textfield('color'),
hidden(-name=>'name',-value=>param('name')),
submit,
end_form,
hr;

CHAPTER 1 ■ THE CGI MODULE26

} else {
print start_html('Hello'),
start_form,
"Enter your name: ",textfield('name'),
submit,
end_form,
hr;

}

print end_html;

exit;

This code is somewhat different from the previous example. First, notice that this script
produces a new page for each step in the process, rather than simply outputting to the same
page regardless of location within the script.

After the requisite interpreter opening line and the request to use the CGI module, the
first thing the script does is send a header to the browser. No matter which step the user is in
within the application, it will need to send a header. There’s no reason to repeat the header
code each time within the if-elsif-else conditionals.

The first conditional encountered within the program is one to look for the existence of
the color parameter. If this parameter contains a value, then you know that the user has
reached the final step within the application. If the script tested for the existence of the name
parameter as before, it wouldn’t be able to tell whether the user was coming from the first or
second step.

The elsif conditional houses the code that you’ll see on the second page of the script,
after the user enters his name. This code is similar to the previous example, except that it now
contains a hidden form variable that contains the name parameter from the previous step:

hidden(-name=>'name',-value=>param('name')),

Finally, the code within the else conditional is executed if neither color nor name contain
a value. This means that the code is executed only when the user visits the page for the first
time, prior to entering any input.

Interaction with the System
You already saw some system interaction when you looked at the %ENV environment variable
hash sent by the web server to your CGI script. There’s virtually no limit to the amount of
interaction that’s possible with both the local system and the remote system through Perl and
its modules. At its most basic level, interaction with the system can simply mean reading or
setting environment variables, reading from or writing to a file on the local filesystem, sending
an e-mail from your script, or working with a database. You can also have more advanced sys-
tem interaction, such as starting or killing processes, querying remote systems, or starting and
stopping actions on the local server or remote servers.

With all of this power comes some danger as well. Any time your script interacts with the
system on which it is housed, something could go seriously wrong. The problem may be the
result of a bug in the code or a malicious use of the program to produce unexpected results.

CHAPTER 1 ■ THE CGI MODULE 27

Figure 1-7. The dreaded Internal Service Error message

No matter where the problem lies, you’ll need to be mindful of the possible outcomes of work-
ing with system processes and files.

Chapter 4 looks at system interaction in detail, including some of the security risks when
interacting with the system.

Debugging and Troubleshooting
An all-too frequent problem when programming CGI is the much-maligned Internal Server
Error message. Figure 1-7 shows an example of such a message in a web browser.

Unfortunately, it’s sometimes difficult to determine the cause of the error. The task is much
easier if you have access to the error log for the web server. An examination of the error log for
the web server will usually get you much closer to finding the cause and then the solution to
the error. Refer to your web server configuration file and/or web server administrator for the
location (and for access to) the error log file for the web server.

A frequent error seen in the error logs for the web server is “Premature end of script head-
ers.” Like the Internal Server Error message, this error could be the result of any number of

CHAPTER 1 ■ THE CGI MODULE28

problems within the CGI script. Usually, the server will output additional information. For
example, while writing one of the scripts for this chapter, I forgot a comma within some CGI
code. The result of this oversight was an Internal Server Error message in the browser, along
with a “Premature end of script headers” error in the log file. But what was more interesting
was another entry in the log file:

Bareword found where operator expected at /home/u030701/cgi/thirdpage.cgi
line 16, near ")

hr"
(Missing operator before hr?)

With that information, I was able to quickly find the error within the script. However,
sometimes debugging isn’t quite as easy as in this example. There are times when all you’ll
see is a “Premature end of script headers” error or another cryptic message about a prob-
lem in the script. When this happens, only your good troubleshooting skills will help. Using
numerous print statements and other temporary debugging tools to try to narrow down
the location of the error is very helpful. In addition, it may be possible to run the script
directly from the command line in order to better determine where the error lies. This is
not always possible though, especially if the error is buried deep within the code. Here, I’ll
suggest some other helpful troubleshooting tools.

Verbose Output
A helpful debugging tool is to use the -w option on the Perl interpreter invocation:

#!/usr/bin/perl -w

Using this option causes Perl to be verbose with undefined variables and other oddities
that it notices within the program. If you’re having trouble identifying the location of a prob-
lem, using -w can help.

Syntax Check
In addition, you can perform a syntax check of the program without actually executing it by
using the -c command-line option. For example, you could check the syntax of a program
called webform.cgi with this command, issued from the shell:

perl -c webform.cgi

You’ll then receive an indication of any syntactical errors within the program. If you’re
lucky, you’ll see something like this:

webform1.cgi syntax OK

If a syntax error is found, you’ll see output indicating the error and the line where the
error was found. For example, I removed a right bracket to produce an error in a script
(really, I removed it to produce the error—I didn't forget it!). When I ran the program with
the -c option, I received this output:

syntax error at webform.cgi line 25, near "else"
webform.cgi had compilation errors.

CHAPTER 1 ■ THE CGI MODULE 29

Figure 1-8. Using Carp to send errors to the browser

The Carp Module
One of the most important and helpful modules available to help debug an error is the
CGI::Carp module, or Carp for short. Using the Carp module, you can redirect more verbose
error messages to the web browser or to a log file. Consider the code shown in Listing 1-14.

Listing 1-14. Using Carp for Debugging

#!/usr/bin/perl

use CGI::Carp qw(fatalsToBrowser);
use CGI qw/:standard/;

print "Content-type: text/html\n\n";

die "I killed it here";

The result of viewing this code through a browser is shown in Figure 1-8.

CHAPTER 1 ■ THE CGI MODULE30

The Carp module was instructed to send fatal errors to the browser using the fatalsToBrowser
namespace. This is fine for initial debugging of a CGI, but I strongly recommend against using this
method on a line-production system, since it could reveal many details about your configuration
to a potential attacker. That said, using fatalsToBrowser can reduce your debugging and trouble-
shooting time immensely when you’re faced with a difficult-to-find bug in a CGI program. If you
don’t have access to the Apache log files, as might be the case in a shared hosting environment,
fatalsToBrowser might be your only option. Just be sure to disable it prior to going live with your
CGI program.

Luckily, fatalsToBrowser isn’t required in order to take advantage of the Carp module. You
can have error messages logged to the file of your choice by placing a BEGIN block at the top of
the CGI script:

BEGIN {
use CGI::Carp qw(carpout);
open LOG, '>>', '/var/log/apache/carperror.log' or die
"Cannot open file: $!\n";
carpout(LOG);

}

In this example, a log file is opened for appending and the carpout() method is used to
send messages to the specified file.

■Note You will likely have to manually create the log file, as well as make sure that it is owned by the
user running the Apache server. For example, I created the carperror.log file with the command touch
/var/log/apache/carperror.log and then chown'ed the file to the www-data user and group using the
command chown www-data.www-data /var/log/apache/carperror.log. The user www-data is the
user that Apache runs as on a Debian system. On other systems, such as Red Hat and Fedora, this may be
the httpd user.

Joining the BEGIN block with a slightly modified version of the code from Listing 1-14 pro-
duces the code shown in Listing 1-15.

Listing 1-15. Logging Carp Messages to a File

#!/usr/bin/perl

BEGIN {
use CGI::Carp qw(carpout);
open LOG, '>>', '/var/log/apache/carperror.log' or die
"Cannot open file: $!\n";
carpout(LOG);

}

use CGI qw/:standard/;

CHAPTER 1 ■ THE CGI MODULE 31

4. This section does not examine security of the server itself. Such things are best left to other titles such
as Hardening Apache by Tony Mobily (Apress, 2004).

print "Content-type: text/html\n\n";

$dbi->connect();

print "hi";

In the example shown in Listing 1-15, Carp logging is set up. Then the rest of the CGI
continues. I purposely call an undefined $dbi->connect() method to produce an error.
When viewed through a browser, this causes a fatal error, and the “hi” never gets printed
to the client’s browser. However, the following line is now inside the carperror.log file:

Can't call method "connect" on an undefined value
at /usr/lib/cgi-bin/perlbook/chap1/isecarp.cgi line 14.

The Carp module enables other debugging options as well. Use perldoc, the Perl docu-
mentation program, to look up further information on CGI::Carp, by typing the following:

perldoc CGI::Carp

Other Troubleshooting Tips
The following are some other tips for debugging and troubleshooting:

• Check the permissions on the program. Many times, the permissions are set incorrectly.
The correct permissions are usually set as rwxr-xr-x, which corresponds to octal 755.
You should never set the permissions to rwxrwxrwx, or octal 777. See the next section on
security for more information.

• Check the ownership of the program. On systems that use the suEXEC feature, the own-
ership must exactly correspond to the ownership set up in the Apache configuration
file. If it doesn’t, the program won’t run and errors will be sent to the log file.

• Check log files! One of the strongest points of open-source software is logging. Examin-
ing the Apache error log is almost always helpful.

Security Considerations with CGI Programs
CGI programs and their security have been much maligned over the years. However, by them-
selves, CGI programs usually present no more of a security risk than any other application that
can be run by anyone in the world, all things being equal. Of course, the fact that the CGI
script can be run by anyone visiting the web site makes the security of the program and the
server particularly important.

A competent system administrator can secure a CGI environment in such a way as to make
up for many kinds of programmer mistakes. That said, CGI programmers are not relieved of the
duty to make their programs safe. This section examines some of the security considerations
when creating a CGI application.4

CHAPTER 1 ■ THE CGI MODULE32

File Permissions
Too often, I’ve seen CGI programs that have improper permissions on the web server. When
something goes wrong in the CGI application, some programmers immediately blame server
settings and go overboard by changing the permissions on the application to the widest, most
open, and insecure setting of all: chmod 777. This permission enables any local user to over-
write and, yes, delete the application. While you may not think that anyone would do this, it
takes only one inadvertent command by one lowly newbie to wipe out the application.

CGI permissions should be 755 (rwxr-xr-x), 775 (rwxrwxr-x), or even more restrictive in
certain circumstances. By no means should “other” or “world” be given write permission on
a CGI script.

Taint Mode
Although very simple, the examples in this chapter have all included two things that you as
a CGI programmer can do to help make your program more secure. The first is using the -T
option when invoking the Perl interpreter. The other is using the strict pragma, as described
in the next section.

The -T option enables Perl’s taint mode, whereby untrusted input into your program will
not be allowed to perform certain operations, such as interaction with the system, writing to
files, and so on. In a way, this option saves you from yourself. A simple mistake using tainted
data can result in a malicious user being able to execute a system process or gain access to
areas they are not authorized to enter.

Data is untainted by running it through a regular expression, and the -T option prevents
the use of untrusted input. This means that only acceptable data will be allowed within the
script once it passes through the regular expression. For example, the script in Listing 1-4
looks for input from the user through a form variable. This input consists of a person’s name.
Therefore, it would be a fair assumption that the only acceptable input consists of letters,
maybe alphanumeric values, and possibly an apostrophe (though you would be surprised at
how many applications break if an apostrophe is included as input). If you wanted to untaint
the name parameter as it came into the script, you might do something like this:

my $name = param('name');
if ($name =~ /^\w+('\w+)?$/) {
$name = $1;

} else {
warn "Bad data found in $name";
$name = "";

}

The code essentially looks for any number of word characters, followed by an optional
apostrophe, followed by any number of alphanumeric values. If this matches, the resulting $1
variable is assigned to $name. If this doesn’t match, a warning is sent to the log file, and $name is
set to nothing.

Using taint mode will likely seem like a hassle, but it will certainly make your application
safer. I recommend making a function to untaint regularly used inputs. For example, it’s quite
common to untaint the same types of data repeatedly, such as names, telephone numbers,
domain names, e-mail addresses, and so on. Creating a function and then calling that func-
tion to untaint the data is usually simplest.

CHAPTER 1 ■ THE CGI MODULE 33

Also, a number of existing Perl modules are available on CPAN (http://www.cpan.org/) to
assist in the process of untainting data. Helpful routines include ones to untaint and check the
validity of e-mail addresses, IP addresses, and credit cards. If you’re writing a CGI application
that requires untainting, don’t reinvent the wheel. Instead, leverage these modules in your
application.

Taint mode is a runtime option. This effectively means that you might not find out about
the tainted use of a variable until that variable is used within the program for an unsafe opera-
tion. The only way to find these types of issues if they are hidden is to test the program before
release.

Strictness
The use strict; statement, included in the scripts in this chapter, is something that, as a Perl
developer, you should be using in all of your scripts, not just CGI programs. When you include
this line in your code, the Perl interpreter will look for variables and functions that have not
been predeclared or variables that are out of scope.

The use strict; directive is a compile-time option. This means that any such errors will
be caught immediately when the program runs. This is in contrast to a runtime option such as
taint checking, which will cause an error only when a tainted variable is encountered.

Untrusted Data from Forms
One of the most common mistakes historically with CGI programs is the use of untrusted data
in an application. The problem usually begins by passing hidden form variables between forms
in the application, and then taking some action based on this data without doing some sanity
checking on the data itself. Shopping cart programs have been broken in this way, as have other
applications. The problem isn’t limited to Perl-based CGI applications; any application that
relies on user input could fall victim to this type of vulnerability.

The options for strictness and taint mode will help to only a certain extent against this
type of attack. The best way to guard against untrusted data is to not use hidden form fields
at all. This isn’t always possible or, more appropriately, it isn’t always practical to create an
entire application without hidden form variables. The important thing to remember is that
when you have any form variable, hidden or otherwise, you must perform a sanity check on
the data received from the user. This frequently includes going through a number of condi-
tionals to ensure that the data is not only in an acceptable format (think: taint checking),
but also is within a valid range.

Take a shopping cart application as an example. With taint checking enabled, you could
only verify that the form parameter was a series of numbers, usually in the form of N numbers
followed by a period (or a comma in some locales) and then two numbers, like 5.15. However,
all taint mode checking has done is to ensure that you have a series of numbers with a period
or comma; it has done nothing to actually check the amount of the number. This means that
there’s nothing to prevent a user from changing that form field to 0.01. Since 0.01 is an accept-
able number according to the taint checking, it would pass through without a problem, except
now instead of purchasing the item at $5.15, the attacker is purchasing it for $0.01!

Does the example seem far-fetched? It shouldn’t. Similar things have happened repeatedly
to web sites with poorly designed applications that don’t do proper checking of data being
passed into the application.

CHAPTER 1 ■ THE CGI MODULE34

Rather than fix the underlying problem, some developers use tricks to ensure that the
data is correct. One of the most popular among these tricks is to use JavaScript to check that
data is valid on the client side, to prevent a round-trip to the server before finding out there is
a problem with the data. Unfortunately, it’s trivial to get around a JavaScript check. Again, the
only place that you can check data is within your program after it can no longer be accessed
by the user.

Reliance on any JavaScript tricks to try to block access to the source code or try to prevent
the user from doing something is a sign of a fragile, poorly designed application in the same
way that reliance on a certain browser is a sign of poor coding. Fragile Internet applications
rely on client-side settings; good applications work using widely recognized standards and
handle errors and unexpected conditions gracefully.

Another flawed trick is to use the HTTP_REFERER (yes, that’s the correct spelling in this case)
variable to ensure that the only place from which a user might visit is a valid page. In other
words, the developer is trying to make sure that someone isn’t trying to come into the middle
of a shopping cart with her own prices and quantities. As you might expect, HTTP_REFERER can
be forged without much difficulty. Therefore, you shouldn’t rely on this value to be sure that
the data you’re receiving is valid; rather, you should check the data against a known set of
good values.

Untrusted Data from Cookies
Just as form data should always be untrusted, cookies are client-side objects sent to your
application and should be treated appropriately. Cookies can be altered, just as form values
can be modified. Any data received from cookies must be taint-checked and value-checked to
ensure that it is the same as when it was sent to the user. The examples from the previous sec-
tion apply equally to cookies. Always check data coming from the user, and always design the
application to fail gracefully when the user does something unexpected.

Summary
Building an entire Perl-based CGI application such as a shopping cart is a matter of handling
form values across multiple pages, sometimes using cookies, sometimes passing the values
across the pages themselves, interacting with a database, possibly managing sessions, and
using environment variables. I’ve found that knowledge and talent at designing web pages is
more of a challenge than getting the background CGI programs working.

In this chapter, you learned about the CGI module including some of its functions. You
also learned how to work with cookies through the CGI module, as well as debugging a CGI
with the help of the Carp module. In the next chapter, you’ll take a closer look at the Carp mod-
ule, as well as some other modules that are commonly used when building web applications.

35

C H A P T E R 2

■ ■ ■

Popular CGI Modules

Along with the CGI module, introduced in Chapter 1, a number of other modules and helper
applications can make your Perl application quite powerful. This chapter examines some of
those modules and helper applications. It also provides an example of coding program behav-
ior based on environment variables, another concept introduced in Chapter 1. Finally, you’ll
look at the security considerations related to using the modules discussed in this chapter.

Integration with Other Modules
The CGI module is central to development of CGI applications in Perl. However, the CGI
module is not the only module useful to the Perl CGI programmer. This section examines
a couple of the popular modules used with CGI programs developed in Perl, including
CGI::Carp, URI::Escape, Net::SMTP, mod_perl, and HTML::Mason.

■Note Like the previous chapter (and subsequent chapters) of the book, this chapter assumes that you are
familiar with Perl programming basics. If you’re unfamiliar with Perl, refer to this book’s appendix.

CGI::Carp
The Carp module, introduced in Chapter 1, assists in the handling of error messages by pro-
viding more useful information. The CGI::Carp module is the CGI version of that module.

Using CGI::Carp, you can send errors to a custom log file rather than to the default web
server log. You can also send errors directly to the browser in place of the dreaded Internal
Server Error message.

You call the CGI::Carp module with a use statement, just as you invoke as any other module:

use CGI::Carp;

By default, many useful methods are exported by this simple invocation. However, some
methods are not exported by default. Some of these will be highlighted in upcoming sections.

Table 2-1 shows the Carp functions for outputting warnings and errors. By default, these
are sent to STDERR, which is usually written to the web server error log. As you’ll see next, you
can change the destination for Carp-generated errors.

CHAPTER 2 ■ POPULAR CGI MODULES36

Table 2-1. Carp Functions for Outputting Warnings and Errors

Function Description

carp() Sends a warning of errors. It is not fatal.

cluck() Sends a warning of errors, including a stack backtrace. It is not fatal.

confess() Sends a fatal error, including a stack backtrace.

croak() Sends a fatal error.

Sending Fatal Errors to the Browser
With CGI::Carp, you can configure errors to be sent to the browser window rather than to
the log file. This might be useful for debugging and other purposes. However, you should
be aware of the potential for this method to divulge too much information to the end user.
In other words, using this method makes debugging and testing easier, but it also may give
out too much information about the script, including its location and other items that you
might not wish disclosed. Therefore, if you’re going to use this method, it’s a good idea to
disable it before going live with the application.

To send errors to the browser, you need to use one of the methods that is not exported by
default; therefore, you must call it explicitly. Listing 2-1 provides an example of using CGI:Carp
to send fatal error messages to the browser.

Listing 2-1. Sending an Error to the Browser with CGI::Carp

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;
use CGI::Carp qw/fatalsToBrowser/;

print header,
start_html("Testing CGI Carp");
die ("This is a test die");

print end_html;

exit;

Viewing the code in a browser reveals a page like the one in Figure 2-1.
CGI::Carp takes care of most of the background work for you once you call the correct

method, with this line of code:

use CGI::Carp qw(fatalsToBrowser);

From there, if the script dies, the error will be sent to the browser.
As you can see in Figure 2-1, the error message also shows contact information. You can

configure this message by calling the set_message() function. Like the fatalsToBrowser()
function, set_message() needs to be explicitly imported into your namespace:

use CGI::Carp qw(fatalsToBrowser set_message);

CHAPTER 2 ■ POPULAR CGI MODULES 37

Figure 2-1. A fatal error sent to the browser

Then call the set_message() function, supplying an argument of the message you want to
appear:

set_message("This is a better message for the end.");

Incorporating the set_message() function into the example in Listing 2-1 yields the code
shown in Listing 2-2.

Listing 2-2. Using set_message with CGI::Carp

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;
use CGI::Carp qw(fatalsToBrowser set_message);
set_message("This is a better message for the end.");

CHAPTER 2 ■ POPULAR CGI MODULES38

Figure 2-2. Using set_message to send a better message to the browser

print header,
start_html("Testing CGI Carp");
die ("This is a test die");
print end_html;

exit;

The results are displayed in Figure 2-2.

Writing to an Alternate Log File
Normally, errors that occur in CGI programs are sent to the Apache error log. Actually, errors
are sent to STDERR, which is normally picked up by Apache and written to the error log. It
can be helpful to have this information written to a different error log. Doing so is possible
with the help of CGI::Carp, which outputs to a log file located in /home/u030701/logs/.

However, before you attempt to write to an alternate log file, you need to ensure that the
web server has permissions to write to the log file. In the case of Apache, the server usually
runs as a nonprivileged user such as www-data, apache, httpd, or the like. Therefore, to enable

CHAPTER 2 ■ POPULAR CGI MODULES 39

Apache to write to this log file, you need to explicitly grant the permission. Here is an example
of the commands for granting permission on Debian Sarge server, which means that the server
runs as the user www-data (you don’t need to restart the server):

touch /home/u0307/1/logs/cgierrors.log
chown www-data.nogroup /home/u030701/logs/cgierror.log

Failure to grant the server permission to write to the log file will result in a Permission
Denied error in the normal error log.

Listing 2-3 shows an example of writing to an alternate log file.

Listing 2-3. Writing to an Alternate Log File

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

BEGIN {
use CGI::Carp qw(carpout);
open (ERRORLOG, '>>', '/home/u030701/logs/cgierrors.log') or

die("Unable to open log file: $!\n");
carpout('ERRORLOG');

}

print header,
start_html("Testing CGI Carp");
warn ("This is a test warning");
print p("Hello, this is a test, check the logfile"),
end_html;

exit;

The script in Listing 2-3 is driven by the code contained within the BEGIN{} block:

BEGIN {
use CGI::Carp qw(carpout);
open (ERRORLOG, '>>', '/home/u030701/logs/cgierrors.log') or

die("Unable to open log file: $!\n");
carpout('ERRORLOG');

}

The BEGIN{} block is evaluated and executed immediately, thus making the code within
that block effective immediately. That code effectively traps any error conditions and writes
(appends) them to the specified log file.

URI::Escape
Working with CGI scripts sometimes means working closely with Universal Resource Identi-
fiers (URIs) and Universal Resource Locators (URLs). It also means playing by a certain set of

1. The difference between a URL and URI is subtle. A URL is a type of URI meant to show the location of
the resource. The Internet Engineering Task Force (IETF) has published a number of Request For Com-
ments (RFC) documents that define these and many other Internet standards. For more information, see
the IETF’s web site (http://www.ietf.org/) or the RFC Editor’s web site (http://www.rfc-editor.org/).

rules or standards for characters that are acceptable in a URI or URL.1 RFCs 2396 and 2732
define the characters that are restricted when they appear in a URL.

In essence, you must escape reserved and unsafe characters if they appear in the query
string of the URI. Usually, you escape characters by changing the value for the reserved char-
acter to its hexadecimal (hex) equivalent preceded by a % instead of 0x. For example, the hex
equivalent for a dollar sign ($) in a URL is %24; the URI hex for a space character is %20. Pro-
grammers familiar with Microsoft Windows web design might recognize the %20 as a space,
since it’s more common to see spaces in filenames on Windows systems than on Unix and
Unix-like systems.

In Perl, there’s more than one way to accomplish a given task, and escaping characters is no
exception. There’s nothing preventing you from manually escaping each invalid character within
a URI, and, in fact, a regular expression wizard could account for all instances of reserved and
unsafe characters, and substitute them with their hex equivalents in one line of code. That’s an
enjoyable exercise for learning regular expressions, but I’ve found that the URI::Escape module
saves a lot of time in this area.

You can download the URI::Escape module from your favorite CPAN mirror (find mirrors
at http://www.cpan.org/). This is probably one of the easiest Perl modules to use.

The URI::Escape module includes two primary functions: uri_escape($string) and
uri_unescape($string). The uri_escape() function accepts an optional second argument
containing a set of characters to be escaped, as opposed to the default set of restricted
characters from RFC 2396. These characters include the following: ;, /, ?, :, @, &, =, +, $, ,,
[,], -, _, ., !, ", *, ', (, and).

When a string containing one of these characters is passed to the uri_escape() function,
it will return a string with the restricted characters replaced with their safe counterparts. Con-
versely, when the uri_unescape() function receives a string with escaped characters, it will
replace those escaped characters with their restricted, unsafe counterparts. Sometimes, the
best way to explain things is with an example. Consider the code in Listing 2-4.

Listing 2-4. A Safe String Example with uri_escape

#!/usr/bin/perl -T

use strict;
use URI::Escape;
use CGI qw/:standard/;

my $unsafestring = "\$5/[3454]/this is a windows filename.asp";
my $safestring = uri_escape($unsafestring);

CHAPTER 2 ■ POPULAR CGI MODULES40

CHAPTER 2 ■ POPULAR CGI MODULES 41

print header,
start_html("Making URLs Safe Is Our Business"),
p("The string that is unsafe for a URL is: $unsafestring\n"),
p("When fed through the url_escape() function it becomes:
$safestring\n"),
end_html;

exit;

The code is pretty simple but illustrates the uri_escape() function very well. As usual, the
URI::Escape functions are imported into the namespace with this code:

use URI::Escape;

From there, a string is created with all sorts of unsafe characters, including a $, brackets,
and spaces. Notice the \ included in the string. The backslash doesn’t actually appear in the
output, since it’s used to escape the $5, so that Perl doesn’t interpret the $5 as a variable!

my $unsafestring = "\$5/[3454]/this is a windows filename.asp";

The string is then run through the uri_escape() function, with the results placed into
a variable called $safestring:

my $safestring = uri_escape($unsafestring);

The next lines of code in the example are ones that you’ve seen in earlier examples, begin-
ning the web page output and so on. Two lines of output to the resulting web page are based
on the output from the uri_escape() function:

p("The string that is unsafe for a URL is: $unsafestring\n"),
p("When fed through the url_escape() function it becomes: $safestring\n"),

First, you’re shown the string as it would appear before any escaping of unsafe characters
(the variable $unsafestring). Next, the result of the uri_escape function is shown as the con-
tents of the $safestring variable. Viewing the page through a browser, as shown in Figure 2-3,
illustrates the results of the program.

Parsing an escaped URI string is a useful task, not only when programming for the Web,
but also when performing forensics or monitoring security logs. Attackers and malicious code
will frequently disguise their code by escaping it using the hex equivalent. Feeding that encoded
string into the uri_unescape() function can help reveal the intent of such an attack. Listing 2-5
shows an example of using uri_escape().

Figure 2-3. An escaped string viewed through a web browser

Listing 2-5. Using uri_unescape to Make a String Without Escape Characters

#!/usr/bin/perl -T

use strict;
use URI::Escape;
use CGI qw/:standard/;

my $unsafestring = "\$5/[3454]/this is a windows filename.asp";
my $safestring = uri_escape($unsafestring);
my $unescstring = uri_unescape($safestring);

print header,
start_html("Making URLs Safe Is Our Business"),
p("The string that is unsafe for a URL is: $unsafestring\n"),
p("When fed through the url_escape() function it becomes: $safestring\n"),
p("When the escaped string is unescaped, it becomes: $unescstring\n"),
end_html;

exit;

CHAPTER 2 ■ POPULAR CGI MODULES42

Figure 2-4. An unescaped string viewed through a web browser

CHAPTER 2 ■ POPULAR CGI MODULES 43

This code is similar to that shown in Listing 2-4. The additions to this code show the
uri_unescape() function being run, as well as the results of that function call. As you can see
in Figure 2-4, the string is indeed unescaped correctly.

Two other functions within URI::Escape enable the developer to escape characters with
a code above 255: uri_escape_utf8($string) and uri_unescape_utf8($string). These func-
tions encode the characters as UTF-8 prior to escaping them. As with the normal uri_escape()
function, the uri_escape_utf8() function also accepts an optional second argument contain-
ing a string of unsafe characters.

Net::SMTP
A somewhat common element in a web site is a contact form. These forms usually consist of
a few form fields that enable the visitor to send a message to the business or web site operator.
In the background, the contact form sends an e-mail message to the site operator or the intended
recipient.

CHAPTER 2 ■ POPULAR CGI MODULES44

2. Mod_perl does much more than merely enabling CGIs to be served faster. It also enables advanced
usage of the Apache web server at a lower level than is possible through a normal CGI.

Like so many other things in Perl, there are multiple way to accomplish the task of sending
e-mail. One method is to use a mailto script such as FormMail.pl or another prebuilt mailer
script. These scripts solve the problem, but many of them have historically had security holes
or other issues that have allowed them to be abused. With that in mind, another solution is to
use the Net::SMTP module to send the e-mail. Chapter 6 examines the use of Net::SMTP to send
e-mail from a Perl script.

Mod_perl and HTML::Mason
Two essential characteristics of popular, high-traffic web sites are speed and frequent updates.
Speed can be accomplished through many means, including the all-too-frequently used method
of adding more and more servers to meet demand. While this is certainly necessary for the most
popular sites and helps with redundancy, a better solution is to first look at ways to improve the
performance of the server itself and the pages being served.

Updating a site frequently means that visitors will always have something new to view
when they visit the site. Too often, companies put up a web presence and leave it as is, in
a static and unchanging mode forever. These same companies then wonder why no one visits
their site. Updating a site is not a difficult task, but maintaining it over a long period of time
can be a headache. Therefore, it’s important to make site maintenance as easy as possible.

To meet both the goals of adding speed through server optimization and making updates
easy, many sites turn to an Apache module known as mod_perl for speed and the Perl module
called HTML::Mason for easing the burden of frequent updates.

Mod_perl is an Apache module that greatly enhances the speed of CGI applications.
Mod_perl embeds the Perl interpreter into the web server, thus making any CGI or Perl-based
responses much faster.2 By preloading the CGI code, mod_perl maintains the application in
a ready-to-run state, as opposed to needing to compile the CGI each time it’s run.

The drawback to mod_perl is that it is not recommended for use in a shared-hosting envi-
ronment. In other words, if you use a web hosting provider and share the server with other
users, the use of mod_perl makes it easier for malicious users to gain access to your application
as it is running. Mod_perl will be discussed further in Chapters 10 and 11.

HTML::Mason (or just Mason) is a Perl module that enables execution of Perl code from
within “Masonized” HTML files, and thus enables advanced templating. Such templating
allows you to define a basic look and feel of a web site and plug text into the look and feel,
thus easing ongoing maintenance of the site.

Designing an entire site from within a CGI application is cumbersome at best. Having to
write each bit of HTML code as a line of Perl code is tedious and drives web developers posi-
tively mad. By using Mason, the HTML can be designed and then interspersed with Perl bits as
appropriate. This frees the web developer to concentrate on the design of the web site. Mason
requires mod_perl and is very powerful in its own right. Mason will be discussed in detail in
Chapter 13.

CHAPTER 2 ■ POPULAR CGI MODULES 45

Interaction Based on Environment Variables
As noted in Chapter 1, environment variables, which are available to your programs from the
server itself, can be useful for CGI programming. Using variables like the system time or the
browser used by the client, you can change the behavior of your program. As an example of
using environment variables, let’s look at displaying a page to the browser based on that
browser and browser version.

Some sites misuse the HTTP_USER_AGENT and attempt to block visitors based on the value of
this variable. Such sites frequently claim to work only in certain browsers. These sites are the
result of poor design by someone who doesn’t understand the Internet. Since HTTP_USER_AGENT
is based on a client-side setting, it can be forged or made to look like an acceptable browser.
The user agent is covered in Chapter 5, where you’ll see how to change this value. You should
not rely on any values coming from the client side when designing a web application, and you
certainly don’t want to design a site that works with only certain browsers.

With that in mind, since different browsers and different versions of a browser render web
pages differently, in some cases, it’s helpful to customize the page to suit the browser. But be
aware that the customization may not work in all cases. In the end, it’s much better to design
a site that adheres to well-defined and widely adopted standards, or at least default to these
settings when the user agent cannot be determined.

Performing an action based on the HTTP_USER_AGENT variable is more of an exercise in Perl
programming than an exercise in anything specific to CGI programming. Programming a set
of conditional statements on the value of the variable is all that’s necessary, as shown in the exam-
ple in Listing 2-6.

Listing 2-6. Determining the User Agent and Printing the Appropriate Result

#!/usr/bin/perl -T

use strict;
use CGI qw/:standard/;

my $useragent = $ENV{'HTTP_USER_AGENT'};

print header,
start_html('User Agent Example');
if ($useragent =~ /Firefox/) {

print p("You are visiting with a Firefox browser");
} elsif ($useragent =~ /MSIE/) {

print p("You are visiting with an Internet Explorer browser");
} else {

print p("Could not determine browser: $useragent");
}
print end_html;

exit;

The relevant bits of code within this program include the line to set the user agent into
a local variable:

CHAPTER 2 ■ POPULAR CGI MODULES46

Figure 2-5. Using the user agent to determine the browser

my $useragent = $ENV{'HTTP_USER_AGENT'};

Next is the Perl conditional if-elsif-else to take an action based on a word found within
the $useragent variable that is unique to the browser:

if ($useragent =~ /Firefox/) {
print p("You are visiting with a Firefox browser");

} elsif ($useragent =~ /MSIE/) {
print p("You are visiting with an Internet Explorer browser");

} else {
print p("Could not determine browser: $useragent");

}

Notice that if the browser cannot determine the browser, the default action is to do
something sane to handle the problem—as opposed to producing an error or, worse yet,
crashing, when this variable isn’t present or is something unexpected.

The result when viewing this program through a web browser is shown in Figure 2-5.

CHAPTER 2 ■ POPULAR CGI MODULES 47

Security Considerations with CGI Modules
Each module presents its own set of security issues. The CGI::Carp module, for example, can
return too much information to the web browser with the fatalsToBrowser() method, which
can result in information disclosure to potential attackers.

You should never trust input from any source, regardless of whether you’re using Perl
or any other language. Any and all input should be sanitized and cleaned using things like
uri_escape(), taint mode (discussed in Chapter 1), and other such modules and helpers.
Disallow all input by default, and then allow only the very smallest subset of valid input
possible.

When you begin interacting with other systems and external clients such as web browsers,
the potential for attack increases. I’ve seen countless web applications try to hide things from
the client by disabling things like the View Source option in the web browser or by using other
cute tricks that just don’t work. Some of the worst applications place database information
directly within the code of the page and assume (or hope) that no one will bother to look at the
source. Or the designers believe they can effectively hide those details from the client when
they output them to the page.

In addition, these same designers employ only client-side validation using JavaScript
and never bother to check the data on the backend. This leads directly to exploits against
their database, such as SQL injection attacks and their related vulnerabilities. Always vali-
date input from within your server-side program, regardless of what you do to validate that
input from the client side. Never rely on anything that you get from the web browser, includ-
ing things like the user agent.

Summary
This chapter examined some additional Perl modules used in web development. You saw the use
of the CGI::Carp module to help debug programs. Then you looked at how to use the URI::Escape
module to work with URLs and URIs in order to make them safe for use within your programs
and for display. You were also introduced to some other modules that will be covered in greater
detail later in the book, including Net::SMTP and HTML::Mason.

One item that was not covered in this chapter was interaction with databases, which is an
important part of many CGI applications. The next chapter covers working with databases in
your CGI applications.

49

C H A P T E R 3

■ ■ ■

Databases and Perl

Databases are vital to countless applications and play an important part in bringing applica-
tions to the Web. This chapter examines the elements involved in connecting to relational
databases using Perl.

This chapter assumes that you are familiar with SQL. If SQL is just another acronym to
you (it stands for Structured Query Language), I recommend that you refer to any number of
excellent books on SQL or web sites that concentrate on SQL and the specific database server
that you’ll be using for development.

LAMP is another acronym that you may have heard in the world of web development.
LAMP is an abbreviation for Linux-Apache-MySQL-Perl/PHP/Python. The MySQL database
portion of that acronym is of interest in this chapter. However, there’s nothing preventing you
from using any other relational database with Perl, including Microsoft SQL Server. This chap-
ter will look almost exclusively at MySQL, simply because it is so popular and well suited for
web applications.

Interacting with a Database
Interacting with a database in Perl involves two pieces: the DBI and the database driver, or
DBD. Each of these pieces is a Perl module. The DBI provides the software interface that is
independent of the database, and the DBD provides the software that is database-dependent.
This section discusses the DBI and the DBD for MySQL, and the role they play in connecting
to a database through Perl.

The DBI
The DBI, an abbreviation for database independent or database interface (more commonly
database independent), contains data-access libraries that are independent of the type of data-
base. In other words, the DBI provides a generic interface on which you call a driver to access
a database. This general interface allows you to use some common methods, regardless of the
backend database.

The DBI is a module in itself, and thus is called into your program’s namespace with a use
pragma:

use DBI;

CHAPTER 3 ■ DATABASES AND PERL50

The DBI loads one or more database drivers (generally referred to as DBD, for database
dependent). The DBD, which will be discussed shortly, has the specific software and code
required to access a given type of database. It provides the interface between the DBI and the
type of database for the connection.

Without a DBD, the DBI in and of itself isn’t terribly useful. However, the DBI provides
the methods that you use to work with the database itself. When coupled with the appropriate
DBD, the DBI is the key to making database connections work.

The DBI gives you three objects, called handles, that enable you to work with the database.
These are the driver, database, and statement handles. Driver handles are not commonly used
within a CGI program, and will not be discussed here. Database handles are used within a pro-
gram in order to make a connection to the database. Statement handles are children of database
handles that are used to send SQL statements to the database. These two types of handles are
discussed in detail later in this chapter, in the “Database Handles” and “Statement Handles”
sections.

Database Drivers
A database driver provides the database-interaction methods that are specific to the individ-
ual database implementation. It is commonly referred to as the DBD, for database dependent,
since its code depends on which database is being used. For example, a MySQL database has
different syntax than an Oracle database. The DBI operates independently of the database,
leaving the implementation-specific bits to the DBD.

You might be curious as to which drivers are installed on your server. The DBI module provides
a function for listing all of the currently installed drivers. Listing 3-1 uses the available_drivers()
function of the DBI module to retrieve the drivers available on the server.

Listing 3-1. Listing Currently Installed Drivers

#!/usr/bin/perl

use strict;
use DBI;

my @drivers;
@drivers = DBI->available_drivers();

foreach my $dbd (@drivers) {
print "$dbd driver is available\n";

}

exit;

You run this program from the command line. The output will look something like this:

ExampleP driver is available
Proxy driver is available
mysql driver is available

CHAPTER 3 ■ DATABASES AND PERL 51

The program incorporates the DBI into the namespace with this line:

use DBI;

The available drivers are placed into an array called @drivers with this line:

@drivers = DBI->available_drivers;

Finally, the array is expanded within the foreach loop and printed to STDOUT, producing
the output.

As you saw from the output, the MySQL DBD is installed on this server. If you wanted to
connect to a different type of database, you would need to obtain the DBD module from your
favorite CPAN mirror or install it from your distribution’s repository. For example, Debian 3.0
includes a number of DBDs, a listing of which is available by searching the repository with the
command apt-cache search dbd.

Some of the more popular DBDs include the following:

• MySQL: As previously stated, MySQL is one quarter of the prized LAMP (Linux-Apache-
MySQL-Perl) development platform that’s so popular around the world.

• PostgreSQL: Another popular open-source database is PostgreSQL. The DBD for
PostgreSQL is similar to that of MySQL.

• ODBC: The ODBC DBD is commonly used to connect to databases that run on Windows
systems, such as Microsoft SQL Server and Microsoft Access, but the ODBC driver could
be used to connect to virtually any database that offers ODBC connectivity.

• Sybase: Another popular DBD is used with the Sybase database server. This server and
the DBD for it won’t be covered in this book. For more information about running
Sybase on Linux and the DBD for Sybase, see http://www.peppler.org/.

Data Source Names, Credentials, and Attributes
A data source name, or DSN for short, is the information needed by the DBI in order to con-
nect to the database. This information includes the DSN itself, as well as other information
such as the hostname of the server hosting the database, the name of the database, a port
number, and so on. The exact information that you must supply depends on the DBD that
you’re using to connect. For example, an Oracle DBD might require or accept different
parameters than the MySQL DBD uses.

The DSN is a simple string, frequently stored in a variable called $dsn. DSNs begin with
the characters dbi:, followed by the name of the driver. For example, the DSN for a MySQL
database is dbi:mysql. You can expand the code in Listing 3-1 to show the valid DSNs for the
given database drivers on your system by using the data_sources() DBI method, as shown in
Listing 3-2.

Listing 3-2. Listing Valid DSNs

#!/usr/bin/perl

use strict;
use DBI;

CHAPTER 3 ■ DATABASES AND PERL52

my @drivers;
@drivers = DBI->available_drivers;

foreach my $driver (@drivers) {
print "$driver driver is available\n";
my @dsns = DBI->data_sources($driver);
foreach my $dsn (@dsns) {
print "\tDSN: $dsn\n";

}
}

When executed, the output contains valid DSNs corresponding to the drivers that are on
the system. For example, here is output for the MySQL driver on my system:

mysql driver is available
DSN: DBI:mysql:books
DSN: DBI:mysql:maildb
DSN: DBI:mysql:music
DSN: DBI:mysql:mysql

Here’s a sample DSN for connecting to a MySQL database called books located on a server
at the IP address 192.168.1.10.

my $dsn = "dbi:mysql:books:192.168.1.10";

An alternate syntax is more explicit:

my $dsn = "dbi:mysql:database=books;hostname=192.168.1.10"

Following the DSN are optional (but usually required) credentials, including a username
and password, for the database connection. When calling the connect() method, the username
and password are passed as additional arguments to the method, separated by commas:

$dbh = DBI->connect($dsn,"username","password");

The $dbh refers to the database handle, as discussed in the next section.
Like the DSN, the username and password are frequently placed into variables and passed

as such to the DBI’s connect() method:

$dbh = DBI->connect($dsn,$username,$password);

You can send additional attributes along to the connect() method. These are attributes
that apply to the handle and can be represented individually or as a hash. Two attributes that
are often applied are RaiseError and PrintError. Both of these attributes are discussed in the
“Error Handling” section later in this chapter.

Database Handles
As stated previously, the process of connecting to a database is mostly generalized among
databases, although there are some considerations for specific types of databases. Connecting
to a database creates a database handle object, which is used as a marshalling point to create
statement handles and interact with the database server.

CHAPTER 3 ■ DATABASES AND PERL 53

Database handles represent a connection to the database, and you could have multiple
connections to multiple (or the same) database by defining multiple database handles. Data-
base handles are usually referred to in code as $dbh.

Creation of a database handle through the DBI requires a DSN. Most databases today are
multiuser, which means that credentials such as a username and password are also required
in order to connect to the database and create the database handle. It is good practice to con-
nect to the database as few times as possible (usually once) within a program, rather than
connecting and disconnecting for each statement or query.

The DBI connect() method connects to the database and returns the database handle:

$dbh = DBI->connect($dsn, ...);

■Note Though you’ll frequently see the database handle object referred to as $dbh, there is no reason why
it couldn’t be called any other valid variable name. The $dbh is a long-standing convention, and I will use it
in this book to refer to a database handle.

Statement Handles
Just as database handles are created from the DBI, statement handles are children of a data-
base handle. As the name implies, statement handles are used for individual statements, such
as SELECT, INSERT, UPDATE, DELETE, and so on, to be executed on the database server. Multiple
statement handles can (and usually are) defined based on one database handle within a given
program.

Statement handles are created on a per-statement basis. This means that if you have
multiple statements to execute against a given database handle, you will need multiple state-
ment handles. However, you can reuse a statement handle if the statement needs to be rerun
against a database. In fact, you can use parameters to execute the same statement but with
different values, as explained in the “Binding Parameters” section later in this chapter.

Statement handles are not always necessary in order to issue statements to the database.
Statement handles are necessary when you need to retrieve, or fetch, information from the data-
base. However, statements also can be executed directly against the database through the
database handle’s do() method, as explained in the “Executing Other SQL Statements” section
later in this chapter.

As previously stated, a statement handle is created from the database handle. In practi-
cal terms, this means that you create a variable, commonly called $sth, to hold the statement
handle object. The statement handle variable’s prepare() method is called on the database
handle. Here’s an example:

my $sth = $dbh->prepare("SELECT user,host FROM mysql.user");

By itself, the statement handle created in the code example may not actually do anything!
For some database types, including MySQL, interaction with the database has not yet taken
place. Rather, the DBI has simply prepared the statement for later execution. This prepare()
method call is used to enable parameterizing of the statement before executing the statement

CHAPTER 3 ■ DATABASES AND PERL54

later. The statement won’t actually be executed against the database until the execute() method
is called on the statement handle, $sth:

$sth->execute();

At this point, the statement—in this case, a SELECT statement—has been run against the
database, although no results have been retrieved.

■Note Some databases will parse the statement when prepare() is called and thus can return errors if
the server encountered problems while trying to parse the SQL statement given in the prepare() method.
Refer to the documentation for the given database driver to determine if statements are parsed at the time
of the prepare() call.

Error Handling
It’s important to check and handle error conditions when working with databases. The DBI
itself automatically handles errors when it detects that one has occurred. The DBI uses two
attributes— PrintError and RaiseError—to automatically report errors. The PrintError attri-
bute uses the warn() function to report errors, and the RaiseError attribute uses the die()
function. Automatic error checking is useful for many situations, but as a developer, you may
find it desirable to manually check for and handle errors for better programmatic control in
case an error pops up.

You can disable both the PrintError and RaiseError attributes by setting the value of
each to 0. This can be done at any time, on the fly if you will, or more commonly, at the time
of database handle creation and connection to the database. As you might expect, you can
also reenable a previously disabled attribute, setting the value to 1. For example, recall the
database connection method called earlier. It looks like this:

my $dbh = DBI->connect($dsn,$username,$password);

You can disable the PrintError and RaiseError attributes like so:

my $dbh = DBI->connect($dsn,$username,$password, PrintError => 0, RaiseError => 0);

As previously stated, these values can be set in a hash as well. (If you’re unfamiliar with
hash references, refer to Beginning Perl, Second Edition by James Lee.) To set them this way,
the hash—let’s call it %attr—first needs to be created and then added to the connect() method
call as a hash reference:

my %attr = (
PrintError => 0,
RaiseError => 0

);
my $dbh = DBI->connect($dsn,$username,$password, \%attr);

By default, the DBI enables warnings only through the PrintError attribute, whereas
RaiseError is not enabled when using the connect() method.

CHAPTER 3 ■ DATABASES AND PERL 55

1. This method is not supported by all drivers.

Knowing that PrintError and RaiseError are available is helpful. Both PrintError and
RaiseError can be enabled on any handle, although they are most often used with database
handles. As previously stated, the attributes can be enabled and disabled on the fly, as needed.
Assume that you have a database handle called $dbh. You can set the attributes on this handle
at any time in this way:

$dbh->{PrintError} = 1;
$dbh->{RaiseError} = 1;

To turn the attributes off, change the value from 1 to 0.
Even with PrintError and RaiseError, it may be easier to manually call the die() func-

tion. This is especially important when initially connecting to the database. The DBI connect()
method returns an undef when the connection fails, which makes it easy to check to ensure
that the connection was successful. A common method for doing so is to use die() with the
DBI connect() method call:

my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

This example also uses the $DBI::errstr method, which returns a description of the
actual error.

■Caution It’s a best practice to not fail quite so loudly when programming a web application. In other
words, you wouldn’t want to give too verbose of an error message and possibly divulge information to
a web site visitor when a connection fails. For that reason, if you will be outputting errors to the browser,
don’t include the $DBI::errstr variable in that output.

There’s nothing preventing you from using a combination of automatic and manual error
checking within your code. In addition, you can use three other methods to help when
debugging:

• The err() method returns the error number.

• As just noted, the errstr() method returns a string containing a description of the
actual error.

• The state() method returns the SQLSTATE error string.1

You’ll likely find that the errstr() method is the most useful of the three debugging methods.

Using SQL Databases with the DBI
Now that you have a grasp of the objects involved in database connectivity through Perl,
including the DBI, various DBDs, database handles, and statement handles, it’s finally time to

CHAPTER 3 ■ DATABASES AND PERL56

connect to the database and do something. This section examines the steps necessary to con-
nect to a database, retrieve some results, and perform other actions necessary for successful
database interaction.

Connecting to the Database
The first step is to load the DBI into your namespace and then create a database handle by
connecting to the database. For example, putting everything together to form a connection
string and create a database handle for connecting to a MySQL database called mysql on the
host 192.168.1.10 looks like this:

#!/usr/bin/perl

use DBI;
use strict;

my $dbh = DBI->connect("dbi:mysql:mysql:192.168.1.10","dbuser","dbpassword");

Alternatively, if you’ve stored the DSN information in its own variable and stored the user-
name and password in variables, you can create the database handle as follows:

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password);

This database connection does not perform any fatal error checking, relying instead on the
DBI’s internal error checking, which in this case, will be the PrintError attribute. The result will
be that any connection errors are only warnings, rather than fatal errors. To cause a fatal error
on connection failure, you can call the die() function explicitly:

my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

From this database handle, $dbh, you create statement handles that all tie back to this
database handle. This means that any queries or other SQL statements run will do so with
the permissions and privileges of the database user for that database handle. If the user that
you used to connect to the database has only SELECT privileges, you will not be able to per-
form another operation, such as INSERT, through that database handle.

In addition, it’s important to note that database handles connect to an individual data-
base. While you can use as many tables within that database as your privileges permit, you
cannot (usually) work with tables in other databases. If you need to work with multiple users
to gain additional privileges or work with more than one database, you’ll need to create addi-
tional database handles and subsequent statement handles from there.

CHAPTER 3 ■ DATABASES AND PERL 57

Disconnecting from the Database
When you’re finished executing queries and working with the database handle, it’s good
practice to explicitly disconnect from the database. Database servers such as MySQL may
automatically end the session after N seconds of idle time and N seconds of session life-
time, where N is dependent on the server configuration. However, most servers will also
have a connection limit as well, which could easily be reached under heavy load or when
something goes wrong and a program continues to execute. For these reasons, explicitly
disconnecting makes life easier in the long run.

The disconnect() method is a database handle method and thus, when you’re finished
executing queries, retrieving results, and flushing statement handles (as explained in the fol-
lowing sections), you can disconnect from the database by calling disconnect():

$dbh->disconnect();

Executing a Query
Executing a query against a relational database using the DBI is a multistep process:

1. You create a statement handle by calling the prepare() method of the database handle.

2. For databases such as MySQL, you call the execute() method on the statement handle
in order to actually execute the SQL statement on the server.

3. To retrieve the results of the query, you use one or more methods of the statement han-
dle. Retrieving the results is explained in the next section.

Let’s build on the statement handle you saw earlier:

my $sth = $dbh->prepare("SELECT user,host FROM mysql.user");

Executing the query against the database requires calling the execute() method against
the statement handle:

$sth->execute();

It’s a great idea to check for fatal errors when executing a SQL statement due to a plethora
of issues that can avail themselves at this late hour. Therefore, if you haven’t enabled RaiseError
on the database handle (remember, PrintError is enabled by default, but is only a warn() level),
you should check for success by using or with the statement handle’s execute() method:

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

■Note Even though you’ve executed the statement on the database, it may still be running on the server.
Queries that return a large number of rows, or otherwise overtax servers, might not be able to complete
immediately, but will continue executing as you fetch the results.

CHAPTER 3 ■ DATABASES AND PERL58

2. There also are variations of the fetchrow_array() method, including fetchrow_arrayref() to retrieve
an array reference, fetchrow_hashref() to retrieve a reference to a hash, and others. For more infor-
mation about these other methods, refer to the documentation on the DBI (perldoc DBI).

Retrieving the Results
What fun would executing queries against a database be without actually being able to process
the results of the query? Results from a query are returned to the statement handle. It’s your job to
programmatically iterate through the results. This is usually accomplished by looping through the
result set and performing some action on each row as it is retrieved. The method usually used for
this purpose is the fetchrow_array() method2 of the statement handle.

Let’s continue with the sample statement handle prepared and then executed:

my $sth = $dbh->prepare("SELECT user,host FROM mysql.user");
$sth->execute or die "Cannot execute sth: $DBI::errstr";

This query will retrieve the username and the host from the MySQL user table, which
holds the usernames and passwords for the MySQL server. To iterate through this result set,
construct a while loop to call the fetchrow_array() method on each loop:

while (my($username,$hostname) = $sth->fetchrow_array()) {
print "Username is $username. Host is $hostname\n";

}

The entire program is shown in Listing 3-3.

Listing 3-3. Retrieving Query Results Listing MySQL Users and Hosts

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("SELECT user,host FROM mysql.user");

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

while (my($username,$hostname) = $sth->fetchrow_array()) {
print "Username is $username. Host is $hostname\n";

}

$dbh->disconnect();

CHAPTER 3 ■ DATABASES AND PERL 59

When run, the program will retrieve each username and hostname defined in the MySQL
user table. Here’s some sample output from one of my servers:

Username is postfix Host is localhost
Username is root Host is localhost
Username is Host is localhost
Username is testuser Host is localhost
Username is user Host is localhost

■Note Some fields may be blank, depending on what’s defined in the MySQL user table.

Within the while loop to retrieve results, you can perform any action necessary on the
data retrieved. The example in Listing 3-3 prints the results. A common task is to push the
results into an array for later use, as shown in the example in Listing 3-4, which looks for
hosts with the MySQL wildcard character, %.

■Note A percent sign within the MySQL user table indicates a wildcard. In other words, it stands for any
host. For example, a wildcard host entry of simply % means essentially any host, anywhere, with that user.
A wildcard host entry of 192.% would require only the first octet of the IP address to match in order for the
connection to be allowed from that host. Of course, a valid username (and hopefully a password) would also
be required.

Listing 3-4. Pushing Query Results to an Array to Find Wildcard Hosts

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("SELECT host FROM mysql.user");

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

CHAPTER 3 ■ DATABASES AND PERL60

3. It would be better practice to place the if{} test within the database fetch itself, in order to save
memory. I guess you’ll have to wait for version 2 of the software!

my @mysqlhosts;
while (my $hostname = $sth->fetchrow_array()) {

push (@mysqlhosts,$hostname);
}

while (<@mysqlhosts>) {
if ($_ =~ /%/) {

print "Wildcard host found: $_\n";
}

}
$dbh->disconnect();

Most of the early portion of this example is the same as Listing 3-3, but notice that the
query itself is different, this time retrieving only the host from the MySQL user table. Instead
of printing the output directly while fetching, it is pushed into an array, @mysqlhosts, for later
use. The later use comes next, when that array is expanded and each entry is examined for the
offending percent sign.3

My output looks like this:

Wildcard host found: %
Wildcard host found: 192.168.1.%

Your output may vary if you don’t have any wildcard hosts on your server.
Another use might be to take the results and build another query based on the data retrieved.

The possibilities are without limit and entirely dependent on the needs of your program.

Dumping the Results
In some cases, you may not want to build the loop for fetching the results from a query. In
such instances, you can use the DBI’s dump_results() method on the statement handle.
Using dump_results() enables you to quickly see if a query was successful. It returns the
rows themselves, followed by the number of rows returned. Listing 3-5 shows the program
in Listing 3-4 altered to use dump_results() instead of the fetchrow_array() method.

Listing 3-5. Dumping a Query’s Results

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";

CHAPTER 3 ■ DATABASES AND PERL 61

my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("SELECT user,host FROM mysql.user");

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

print $sth->dump_results();

$dbh->disconnect();

The output is as follows:

'postfix', 'localhost'
'root', 'localhost'
'', 'netserver'
'testuser', 'localhost'
'user', 'localhost'
3 rows

Finish()-ing the Statement
It is a good idea to be aware of the result set that you’re working with from a given statement
handle. If you don’t retrieve all of the rows from a query, the result set will still hold data. This
can mean extra memory usage for the database server and can also result in warnings when
you attempt to execute the disconnect() method. Therefore, if you won’t be retrieving all of
your results, be sure to use the finish() method on the statement handle to flush the results.

In the examples shown, all of the results were retrieved by iterating through them using
fetchrow_array() or dump_results(). However, if this hadn’t been the case, I would have used
the finish() method, like this:

$sth->finish();

Using the Quote Method for Dynamic Statements
In the examples shown so far, there’s no reason why you couldn’t substitute a valid variable
within the SQL statement. In other words, instead of merely using this:

SELECT host FROM mysql.user;

you could, assuming a variable of $username, use this:

SELECT host FROM mysql.user WHERE user = '$username';

In this example, the variable $username is interpolated, and whatever is in $username will be
sent with the query. This interpolation of $username is as opposed to parameterizing or binding
for dynamic statements, as you’ll see in the “Binding Parameters” section, coming up soon.

A popular vector for attackers exploiting database connectivity (particularly in web applica-
tions) is to include characters or other anomalies in an attempt to get the program, and therefore
the database server, to execute additional commands. These types of attacks are made possible

CHAPTER 3 ■ DATABASES AND PERL62

when input is allowed unchecked or the program executes a SQL statement without first properly
sanitizing it for the database’s consumption. The DBI contains an aptly titled quote() method to
properly escape or sanitize SQL statements for you.

You should use the quote() method for any statement that will use parameters or other
variables or input that could possibly be dirty. The quote() method belongs to a database han-
dle, since nearly every database server has its own set of rules for quoting. Consider this code,
assuming a database handle of $dbh has already been created:

my $dirtystring = "This is some %really% \"weird\" * input";

my $cleanstring = $dbh->quote($dirtystring);

my $sth = $dbh->prepare("SELECT * from tablename where something = $cleanstring");

So, the example shown earlier in this section might look like this:

my $usernamein = "suehring";

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE user = " .
$dbh->quote($usernamein . " ");

While it may seem like a hassle to need to clean up input and other parameters before
using them in a statement, the trade-off is well worth the extra typing. I could go into a story
akin to the age-old “I used to have to walk 18 miles a day to school” of how life was prior to the
quote() method, but rest assured that using quote() is much easier and simpler than needing
to do the same function manually against all input.

Executing Other SQL Statements
Not all statements must go through the prepare() and execute() methods, or even create
a statement handle prior to being run against the database server. The database handle’s do()
method executes a statement immediately against the database. This is useful for performing
actions like DELETE, INSERT, and UPDATE, which don’t actually retrieve any results from the data-
base, but merely perform an action against the database.

The do() method is used in the context of a database handle. Assuming a database handle
of $dbh with a table called table, you might use do() like this:

my $rows = $dbh->do("DELETE from table where id = '4'");

The $rows variable would contain the number of rows affected by this statement. If the
statement executes successfully, regardless of the number of rows deleted, the do() method
will return true. In other words, the rows affected could still be zero, even though the state-
ment executed successfully.

Binding Parameters
As you saw earlier, you can use the quote() method to create dynamic SQL statements. How-
ever, another method exists for creating such statements, namely parameters. Parameters are
also known by a few other names or concepts, such as binding or placeholders. When you hear
one of these terms, it’s referring to the concepts described in this section.

CHAPTER 3 ■ DATABASES AND PERL 63

You may be asking why you would use binding instead or interpolated value queries. Binding
speeds up the execution of the same SQL statement. Therefore, if you’re going to be executing the
same statement but with different values, you can gain speed by using parameters. Whether or
not you should use parameters also depends on the database that you’re using; not all databases
implement binding.

Recall a previous example that used variable interpolation to build the statement handle
for a dynamic query:

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE user = " .
$dbh->quote($usernamein . " ");

Using parameters, that statement handle would look like this:

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE user = ?");
$sth->bind_param(1, $username);

The bind_param() method on the statement handle accepts an index value, beginning
with 1, to specify the order in which the parameters should be bound, and it then accepts the
value itself, this time in the variable $username.

Notice that the quote() method is not used here. Since bind_param() hands off the param-
eters to the database separate from the SQL statement, the quote() method isn’t necessary.

You can (and many times will) bind multiple values. Consider this example:

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE user = ? AND host = ?");
$sth->bind_param(1, $username);
$sth->bind_param(2, $hostname);

It’s important to understand that not all portions of a statement can be parameterized. For
example, most databases won’t allow you to parameterize the entire WHERE clause of a SQL state-
ment. However, binding the values used within that WHERE clause is valid on many databases.

Rather than using bind_param() to bind parameters to their values, you can also send the
values when you call execute(). You must specify the values in the same order in which they
appear in the SQL statement. So, based on the SQL statement in this example:

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE user = ? AND host = ?");

username should be specified first and host second. Therefore, this would be correct:

$sth->execute($username,$hostname);

and this would be incorrect:

$sth->execute($hostname,$username);

Inserting Data into a Database
Inserting rows into a database is largely the same syntactically as retrieving rows from it, with
the obvious changes to the SQL syntax itself. For example, you could use the do() method or
the prepare() method for inserting into a database. You create the database handle as you
would for any other database operation, create the statement handle the same way, and call
execute() if you’ve used prepare().

CHAPTER 3 ■ DATABASES AND PERL64

Assume that this INSERT statement would execute against a database table:

INSERT INTO urls VALUES
('','http://www.braingia.org/','suehring',unix_timestamp(),'query words');

The equivalent DBI code is shown in Listing 3-6.

Listing 3-6. Inserting into a Database

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:goo:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("INSERT INTO urls VALUES
('','http://www.braingia.org/','suehring',unix_timestamp(),'query words')");

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

$dbh->disconnect();

As you can see, much of this code is the same as previous examples, with the exception
being the INSERT syntax for the actual statement. You can also bind parameters with INSERT
statements and use the do() method.

One common task when inserting data into a table is to retrieve the value for an auto-
incremented index ID for the newly inserted row. The MySQL DBD includes a function for
retrieving this value. Note that this is dependent on the database itself and also on the data
layout. If there is no auto-incremented field in the database table, this value might be mean-
ingless. Additionally, some databases don’t implement this. Check the Perl documentation
for your DBD.

In the case of the example in Listing 3-6, the first field was an auto-incremented field.
Therefore, it’s possible to add some code to the example to retrieve the value for that ID field.
The new code is shown in Listing 3-7.

Listing 3-7. Retrieving an Index ID

#!/usr/bin/perl

use DBI;
use strict;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:goo:192.168.1.10";

CHAPTER 3 ■ DATABASES AND PERL 65

my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("INSERT INTO urls VALUES
('','http://www.braingia.org/','suehring',unix_timestamp(),'query words')");

$sth->execute() or die "Cannot execute sth: $DBI::errstr";

my $insertid = $dbh->{'mysql_insertid'};
print "$insertid\n";

$dbh->disconnect();

Notice the two new lines in Listing 3-7:

my $insertid = $dbh->{'mysql_insertid'};
print "$insertid\n";

In this case, the output from each run should increment, assuming that no one else is
inserting data into the table at the same time! For example, I called this program insert2.pl.
Running the program from the command line outputs the $insertid variable:

netserver% ./insert2.pl
41

Running the program again reveals that the value is indeed incrementing:

netserver% ./insert2.pl
42

Interacting with the Web
Thus far, this chapter has looked at only the basics of the DBI, and with good reason. Under-
standing how the DBI works enables you to write powerful web applications. What you do
with the data contained in the database is entirely up to you.

Outputting to HTML
You could simply output the statements to plain HTML by combining the DBI functions with
what you’ve learned about CGI programming.

Reworking the example from Listing 3-4 into a plain web page yields the result shown in
Listing 3-8.

Listing 3-8. Creating a Web Page Integrated with SQL Data

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

CHAPTER 3 ■ DATABASES AND PERL66

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $hosttolookup = "%";

my $sth = $dbh->prepare("SELECT host FROM mysql.user WHERE
host LIKE ?");

$sth->execute($hosttolookup)
or die "Cannot execute sth: $DBI::errstr";

my @mysqlhosts;
while (my $hostname = $sth->fetchrow_array()) {

if ($hostname =~ /%/) {
push (@mysqlhosts,$hostname);

}
}

print header,
start_html('MySQL Hosts Using Wildcards');

my $count = @mysqlhosts;
if ($count == 0) {

print p("No Hosts Using Wildcards");
}
else {

while (<@mysqlhosts>) {
print p("Host Wildcard: $_");

}
}

print end_html;

$dbh->disconnect();

Essentially, the program is largely the same as those previously shown. The main differ-
ence is that, instead of printing to STDOUT, this program outputs HTML. The core of the
“HTMLized” portion of the program is here:

print header,
start_html('MySQL Hosts Using Wildcards');

my $count = @mysqlhosts;
if ($count == 0) {

print p("No Hosts Using Wildcards");
}

CHAPTER 3 ■ DATABASES AND PERL 67

Figure 3-1. The output from the script indicating that hosts were found with wildcards

else {
while (<@mysqlhosts>) {

print p("Host Wildcard: $_");
}

}

print end_html;

None of this code should be new to you after going through the previous chapters on CGI
programming. If there are no hosts using wildcards, the program will output a message indi-
cating that. If there are hosts using wildcards, that list is sent to the HTML instead, as shown in
Figure 3-1.

Building HTML Tables
The output from Listing 3-8 is nice for a simple program, but when you’re building a more
complex CGI program, you’ll likely find that you want to use HTML tables for the output. You
can build a table manually or by using the CGI’s table() method. The example in Listing 3-9
uses the table() method to print each user and host on a MySQL server in tabular format.

Listing 3-9. Creating an HTML Table

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

my $username = "dbuser";
my $password = "dbpassword";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("SELECT host,user FROM mysql.user");

$sth->execute()
or die "Cannot execute sth: $DBI::errstr";

print header,
start_html('MySQL Hosts and Users'),
table({-border=>1}),

Tr({-align=>'CENTER',-valign=>'TOP'},
[

th(['User','Host'])
]);

while (my ($hostname,$username) = $sth->fetchrow_array()) {
if ($hostname eq "") {

$hostname = "undef";
}
print Tr({-align=>'CENTER',-valign=>'TOP'},

[td(["$username","$hostname"])
]);

}

print end_html;

$dbh->disconnect();

Running this program shows that the data has been placed into an HTML table, as shown
in Figure 3-2.

In Listing 3-9, first the table is created using CGI.pm’s table() method:

print header,
start_html('MySQL Hosts and Users'),
table({-border=>1}),

Tr({-align=>'CENTER',-valign=>'TOP'},
[

th(['User','Host'])
]);

CHAPTER 3 ■ DATABASES AND PERL68

Figure 3-2. Data from a SQL query has been placed into an HTML table.

CHAPTER 3 ■ DATABASES AND PERL 69

Next, the results are iterated through and the table dynamically created on the fly:

while (my ($hostname,$username) = $sth->fetchrow_array()) {
if ($hostname eq "") {

$hostname = "undef";
}
print Tr({-align=>'CENTER',-valign=>'TOP'},

[td(["$username","$hostname"])
]);

}

Each row of the table must be created within the while() loop in order for it to make sense
in an HTML table format.

You could also place values retrieved into a hash within the while() loop, or you could
use other methods, including fetchrow_hashref() and others. See the DBI documentation
(type perldoc DBI from a terminal window) for more information about other methods.

CHAPTER 3 ■ DATABASES AND PERL70

Troubleshooting Database Interaction
Many a Perl DBI developer has been perplexed by database connectivity. Troubleshooting
a database connection is no different from troubleshooting another bit of code. Well, it may
be a little different, because troubleshooting a database connection is easier! Most servers
will have a command-line interface (CLI) into the database or another means for you to test
your connection apart from the program itself.

Here are some troubleshooting tips for working with database connectivity issues in
a Perl program:

• If a connection to a database isn’t working, the first thing you should do is examine
the amount of error reporting that you have coming from the database. Be sure that
PrintError and RaiseError are enabled, and use the or die() construct as much as
possible.

• One of the most helpful debugging and troubleshooting techniques is the frequent use
of simple print statements to help determine where the problem might lie. In the con-
text of a SQL statement, it’s very helpful to print out the statement exactly as it’s about
to be run on the database. Doing so can help you to see that a parameter isn’t being
filled in correctly or might help you spot another error.

• On some systems, you can enable logging of all queries for certain database servers
such as MySQL. Be careful in doing so, however, as this can lead to a massive amount of
logging and can also log potentially sensitive information, depending on what’s stored
in your database.

• Databases that have a CLI are especially helpful. Connect to the CLI as the same user
that you’re using for the program, and attempt to execute the same SQL statement to
see if it works. You would be surprised how many issues can be solved by connecting to
the CLI to imitate the program’s behavior in an interactive way. Refer to the documenta-
tion for your database server to determine the syntax for connecting to the CLI.

Security Considerations with Data Access
Accessing a database from a Perl program, especially one that’s on the Web, presents its own set
of security risks and challenges. You most definitely don’t want to allow unauthorized access to
the database and the data it contains. This section looks at some of the risks involved and gives
suggestions for mitigating those risks.

Stored Credentials
One of the most obvious risks in connecting to a database from a program is that the credentials
(username and password) are stored in the program itself or within a file that the program can
read for those values. Unfortunately, there’s no truly effective method for mitigating this risk. If
you’re running the program on a shared server, such as some web hosting provider’s server, you
need to ensure that other users cannot read the program’s code to see the password. This is usu-
ally easier said than done. However, many web hosting providers now have users running in

CHAPTER 3 ■ DATABASES AND PERL 71

their own chroot’ed shell, which means that the risk of another user reading your files is greatly
reduced. (For more information about chroot, see http://www.braingia.org/projects/.)

Unnecessary Privileges
There’s always a chance that someone might get access to the credentials stored in your pro-
gram. For this reason, it’s important that the user credentials stored in that file allow only the
minimum amount of privileges necessary to perform the task for that program. For example,
if you have one program that performs SELECT statements for a catalog and another that
updates a shopping cart database, it’s much better to use two separate users for these pro-
grams, each with separate privileges, than to have one “super-user” with all privileges.

■Tip Grant only the exact privileges necessary to perform the task at hand on only the databases (and
even tables) necessary to perform that task from only the necessary host.

Having performed a number of security audits, I can’t count the number of times that I’ve
seen developers grant their users full privileges (with grant option in MySQL, for example).
By doing so, they’ve effectively made a super-user who even has the power to add other users!
I can’t think of a worse scenario than having attackers get that username and password and be
able to not only control the database, but also to add hidden users for themselves to get back
in later! Again, it’s important to keep privileges at a minimum and separate privileges when-
ever possible.

Unsanitized Statements and Input
Another common mistake is to execute statements on a database that haven’t been properly
sanitized. The DBI includes the quote() method to make sanitization easy. Employ the quote()
method whenever you’ll be using a variable within a SQL statement.

Putting data on the Web through a database magnifies the problem of unsanitized input.
Improperly checking (or not checking at all) the input that arrives from a web form or elsewhere
is only asking for trouble when the input can lead to database interaction. Be sure to untaint the
data, as discussed Chapter 1, and be sure to use the quote() method to clean the input and pre-
vent users from executing more than they should on a database.

Summary
This chapter looked at database access through Perl. Much of the chapter was devoted to the
DBI, which provides the interface into databases in Perl. The DBI uses database-dependent
code, or DBDs, to connect to various database server implementations. Much of the chapter’s
material was not specific to web programming per se, but rather covered how to work with
databases.

CHAPTER 3 ■ DATABASES AND PERL72

The chapter included examples of connecting to databases, running queries, and retrieving
query results. You also saw some examples of how to create HTML pages using data retrieved
from SQL with the DBI.

The final section discussed security considerations with data access. It’s very important to
ensure that any data you use—whether in a SELECT statement or any other SQL statement—is
sanitized.

In the next chapter, you’ll learn about system interaction through Perl programs, with
specific focus on the interaction from web programs. This will include a discussion of working
with files through a CGI program.

73

C H A P T E R 4

■ ■ ■

System Interaction

Interacting with the system means many things to a Perl script. Naturally, by the simple
act of executing, a Perl script is interacting with the system on many levels. Exactly how the
interaction at that low level occurs isn’t of much concern to most Perl programmers. The
system interactions of interest to Perl programmers are those that involve files and system
processes. These types of interactions with the system are the focus of this chapter.

Perl Scripts and the Operating System
When a Perl script interacts with the system, it normally does so with the rights and privileges
of the user executing the script. If the user is root, then the script usually executes with the
rights of root. If the script runs as a normal user, then it has the rights of that user. However,
Perl scripts can change their userid (uid), real or effective, within the program by using mech-
anisms such as suidperl and Apache’s suEXEC feature.

When a CGI program interacts with the system, it usually does so with the permissions of
the web server. On modern Linux systems, Apache runs as a nonprivileged user such as httpd,
www-data, or the like, rather than the root user. This means that any CGI script executed as part
of a web application will be run as this nonprivileged user, so it likely won’t be able to write to
files on the system, to kill processes, and so on.

The Apache suEXEC feature is an option to enable CGI scripts to be run as a user other
than the httpd web server user. Using suEXEC, the CGI scripts might be owned and therefore
run as a normal user account, and thus be able to read and write to that user’s directories and
files. The Apache suEXEC mechanism makes administrators and most web developers happy,
if that’s possible. Administrators are happy because CGI scripts aren’t run as a system account
(such as httpd). Web developers are happy because they can read from and write to their own
set of files without worrying about another developer on the computer overwriting their files.

Working with Filehandles
File input and output (I/O) is accomplished in Perl through the use of filehandles. Three file-
handles are provided by default: STDIN, STDOUT, and STDERR (standard input, standard
output, and standard error, respectively).

CHAPTER 4 ■ SYSTEM INTERACTION74

■Note Having these three default filehandles available means that you can use shell redirect characters
such as greater-than and less-than (> and <) to receive output from and send input to a Perl program. For
the most part, with CGI scripts, these redirection features aren’t used.

When working with a CGI program written in Perl (or any Perl program, for that matter),
you can also open, or create, additional filehandles other than STDIN, STDOUT, STDERR.
These filehandles are logical connections between the filesystem and the Perl program. You
can open filehandles for reading, writing (create and write), or appending. This section
examines the basics of using filehandles to work with files from within your Perl program.

Opening Filehandles
The call to open a filehandle consists of three main elements: the name of the filehandle, the
mode for opening, and the name of the file to open. This is most easily shown with a timely
example:

open MYFILE, '<', 'thefilename';

This example makes the call to open a filehandle named MYFILE. This name, MYFILE, will
be used internally by your program when referencing the filehandle. The name MYFILE resides
in its own namespace. The file as it exists on the filesystem is called thefilename, and the mode
in which this file will be opened is for reading.

You can also open a file for writing by using a single greater-than sign (>), using a slightly
different syntax:

open (MYFILE, ">thefilename");

Most Perl programs written over the past several years will use this format for the open()
statement. The previous example uses a newer syntax for opening a filehandle. If thefilename
file already exists on the system, it will be overwritten because of the single greater-than sign.

■Caution It's important to use extra care when writing to files. It’s quite possible to overwrite important
system files (such as /etc/passwd) by including only one greater-than sign (overwriting) instead of two
(appending).

Using a double greater-than sign (>>) indicates that the file will be opened for appending.
Building on the previous example, opening a file called thefilename for appending using
a filehandle named MYFILE looks like this:

open (MYFILE, ">>myfilename");

All of the examples assume that the file myfilename is located in the same directory as
the Perl script. As often as not, the file is located in a different directory. In that case, you
need to tell the Perl program where to find the file, whether using a location relative to the
current directory or an absolute path. I’ve found that it’s best to fully qualify the location

CHAPTER 4 ■ SYSTEM INTERACTION 75

with an absolute path. Doing so ensures that the program will always be able to find the file
(assuming that it actually exists).

Opening a file for reading located in the /tmp directory looks like this:

open (FILE, "/tmp/thefile");

File-open operations return true if they are successful and false if they are not, but Perl
programs will silently continue and even let you use filehandles that haven’t been created suc-
cessfully. This can wreak havoc on Perl programs, unless the status of the file-open operation
is checked for errors. As the programmer, it’s your job to check the result, which is where the
die() function comes in.

Using die() to Trap Errors
File-open operations can fail for any number of reasons, including because the file or a com-
ponent of its path does not exist or because the user does not have sufficient privileges. What
happens if the file that you’re opening within a Perl program doesn’t exist? For create and
append file operations, the file will automatically be created if it doesn’t exist. Remember that
for create operations (the single greater-than sign), the file will be created or re-created, even
if it already exists. If the path to a file being opened doesn’t exist, Perl will silently continue as
if the file had been created successfully. The same applies for files that are opened for reading:
Perl will continue executing, regardless of whether the file or path actually exists. Therefore,
it’s important that you trap errors when working with files and directories.

Using the die() function, you can effectively stop the program from executing if an error is
encountered while opening a file. The die() function prints to STDERR when called. Since the
open() function returns true on success and false on failure, you can use the die() function
when the open() function returns false, as would be the case when a file-open operation fails.

The easiest way to use the die() function is with a logical OR when opening a file, as in
this example:

open (MYFILE, ">thefilename") or die "Cannot open file 'thefilename': $!";

The logical OR can also be written as ||.

Reading from Filehandles
To read from a filehandle, you essentially read each line individually, in much the same way
you read from STDIN. Consider this example:

open (FILE, "/tmp/file") or die("Cannot open file: $!");
while (<FILE>) {

chomp;
print "The line just read was: $_\n";

}

This example uses the chomp() function, which takes a scalar argument and removes the
newline character from the end, assuming that there is indeed a newline character present. In
the context of this example, chomp() acts on the $_ built-in variable, which holds the contents
of the line just read in from the filehandle.

The chomp() function is used frequently when reading from a file to remove the newline
character from the end of the line. The chop() function is also available, but it isn’t as useful in

CHAPTER 4 ■ SYSTEM INTERACTION76

this context, because it removes the last character from the line, regardless of whether that
character is a newline or another character.

Writing to Filehandles
To write to a filehandle, place the filehandle after the print function call, like so:

open (NEWFILE, ">/tmp/thenewfile");
print NEWFILE "Printing to the new file like this.\n";

Closing Filehandles
None of the examples so far have shown how to close a filehandle. That is because Perl auto-
matically closes the filehandle when the program exits or if the file is opened again. However,
I almost always explicitly close any open filehandles. I do so simply to be thorough in coding.
I recommend that you do the same. It’s a simple method:

close (FILEHANDLE);

Here’s a better example:

open (NEWFILE, ">/tmp/thenewfile") or die (Cannot open file: $!");
print NEWFILE "Printing to the new file like this.\n";
close (NEWFILE);

Using File Tests
One final area of basic file usage that I’ll touch on are the file tests, known within the perlfunc
documentation (where you can find more information about them) as the “-X” tests. These
functions test the given argument, a filename or filehandle, for something. That doesn’t sound
like much fun, but it is really. Using a -X file test, you can quickly determine whether a file
exists, if it’s a directory or a symbolic link, whether it’s a text file or a binary file, it’s age, and
other such useful bits of information that you might find necessary in a given Perl program.
Table 4-1 is a partial list of the -X file tests.

Table 4-1. Some -X File Tests

-e File or directory exists.

-z File is empty (zero size).

-s File is not empty; function returns size in bytes.

-f Argument is a plain file.

-d Argument is a directory.

-l Argument is a symbolic link.

-p Argument is a named pipe.

-S Argument is a socket.

-b File is a block special file.

-c File is a character special file.

-t Filehandle is an open tty (isatty()).

-f Argument is readable by effective uid/gid.

CHAPTER 4 ■ SYSTEM INTERACTION 77

Some -X File Tests

-w Argument is writable by effective uid/gid.

-x Argument is executable by effective uid/gid.

-o Argument is owned by effective uid.

-R Argument is readable by real uid/gid.

-W File is writable by real uid/gid.

-X File is executable by real uid/gid.

-O File is owned by real uid.

-T File is an ASCII text file.

-B File is a binary file.

-u Argument has setuid bit set.

-g Argument has setgid bit set.

-k Argument has sticky bit set.

-M Time in days from argument modification time to Perl program start time.

-A Time in days from argument access time to Perl program start time.

-C Time in days from argument change time to Perl program start time.

A Slight Aside: Directory Listings
I know that I said I was done with basic filesystem usage in Perl, but before I conclude the
section, I want to address a common task that you might encounter in your Perl program:
obtaining a directory listing or a listing of files in a directory.

Using readdir, you can obtain a listing of files in a given directory by using its directory
handle. Directory handles are much like filehandles, insofar as how you create them within
your Perl program. You create a directory handle with the opendir() function:

opendir (TMP, "/tmp") or die "Cannot open /tmp";

Then you can read from the directory handle in a manner similar to reading from a file:

while ($file = readdir(TMP)) {
print "The file $file is in /tmp\n";

}
closedir(TMP);

You can also close the directory handle by using the closedir() function, as shown in this
example.

Uploading Files with CGI.pm
So far, this chapter has laid some groundwork for dealing with files from within Perl programs,
both CGI and non-CGI. Now, it’s time to look at filesystem interaction specifically from a CGI
program.

Uploading files through a web browser is a multifaceted task that confronts many web
developers. Not only must developers code the basic framework for the upload, but they must
also consider the security aspects of allowing users to put files on the web server. If those files

CHAPTER 4 ■ SYSTEM INTERACTION78

Figure 4-1. A form with a file-upload field

contain malicious code that a user can then execute, the user might very well be able to com-
promise the entire web server. If a size limitation isn’t put on the file, a user might upload a file
big enough to fill the disk of the web server.

As with seemingly everything in Perl, there are multiple ways to upload files through
a CGI program. It’s quite possible to build your own handlers for file uploads. However, the
CGI module includes functions to assist with file uploads. Here, I’ll describe using the CGI
module functions.

■Note The Apache::Request module, which works with mod_perl, offers another method for working
with uploaded files. It provides greater control over the file-upload process than the CGI module functions.
For example, the Apache::Request module can help limit the maximum size for the file, thus making the
entire process of allowing uploads just that much safer. Chapter 11 provides more information about the
Apache:Request module.

Creating a File-Upload Field
CGI.pm includes a function to create a file-upload field within a web form, much like the one
shown in Figure 4-1. The upload field created must then be processed within your program.

In order to use the file-upload field function, called upload(), you must use the special
multipart encoding scheme, which is accessed by calling start_multipart_form(), rather than

CHAPTER 4 ■ SYSTEM INTERACTION 79

the normal start_form() function that you’re accustomed to using. Timely code snippets
always seem to help. Here’s an example of the upload() function in action:

start_multipart_form();

$handle = $q->upload(-name=>'filename',
-default=>'the_initial_text',
-size=>75,
-maxlength=>150);

The upload() function accepts four parameters:

• -name: This is the name for the field itself. It will be the name that you use to access the
field within your code. It has no significance outside the web page and your program.
In other words, users never see this name unless they view the HTML source of the web
page. The -name parameter creates a filehandle within your Perl program, which means
that you can work with the file just as you would work with any other filehandle in Perl.
Now you know why all that material about filehandles in the previous section was so
important.

• -default: This parameter specifies the default text to appear in the field. This text isn’t
necessarily honored by all browsers, so you should be wary of its use or test extensively
using different versions of different browsers (which you should do anyway).

• -size: This parameter indicates the physical size of the field as it will appear on the web
page. Note that this size doesn’t have any correlation to the size of the file to be uploaded;
rather, it’s akin to the size parameter for an everyday, run-of-the-mill form field. Like the
-default parameter, the -size parameter is optional.

• -maxlength: This parameter specifies the maximum length in characters that the field
will accept on the web page. Like -size, -maxlength has nothing to do with the actual
size of the file to be uploaded. And like the -size parameter, the -maxlength parameter
is optional within the call to upload().

So, of the four parameters, only the first, -name, is required. The remaining three parame-
ters are not required. In fact, many browsers ignore the -default option. Since three of the four
parameters are optional, the code example shown previously can be written more tersely, as
follows:

$handle = $q->upload('filename');

As mentioned, the upload() function creates a filehandle that you then need to deal with in
your code. Since it’s a filehandle, you can do a few things with the uploaded file. Most commonly,
the filehandle will be used to simply print (or output) to a file on the filesystem. Expanding on the
code example just given and what you’ve learned about writing to files already, here’s an example
that takes the filehandle and writes to standard output:

$handle = $q->upload('filename');
while (<$handle>) {

print;
}

Accessing Uploading File Header Information
The CGI module also includes a function called uploadInfo(), which gives you access to
header information which may (or may not) be sent from the web browser along with the
uploaded file. The headers sent by the browser are actually sent as a reference to a hash or
associative array. Using the uploadInfo() function along with a header like Content-Type,
it’s possible to determine the type of document being uploaded in order to allow only cer-
tain types to be uploaded. Be forewarned though, browsers can lie. Don’t ever rely on user
input or on any data coming from a user’s browser. As I’ve emphasized in previous chap-
ters, no input should be used within your program until it has been validated.

For example, it’s possible to incorporate a CGI program into the form shown in Figure 4-1
in order to print the Content-Type of the file being uploaded. Listing 4-1 contains a basic CGI
script for accomplishing this task.

Listing 4-1. Printing the Content-Type of an Uploaded File

#!/usr/bin/perl

use strict;
use CGI qw/:standard/;

my $q = new CGI;

my $filename = $q->param('uploaded_file');
my $contenttype = $q->uploadInfo($filename)->{'Content-Type'};

print header;
print start_html;
print "Type is $contenttype<P>";
print end_html;

The Content-Type is placed into the variable $contenttype, and then printed to the output
stream of an HTML page as an example. Figure 4-2 shows an example of choosing to upload
an HTML file, and Figure 4-3 shows the output produced from Listing 4-1.

In practice, you would likely check the content type in order to make sure that it’s one of the
acceptable types of files that your program expects as input. Consider the example in Listing 4-2.

CHAPTER 4 ■ SYSTEM INTERACTION80

Figure 4-2. Uploading an HTML file

Figure 4-3. Output showing the Content-Type

CHAPTER 4 ■ SYSTEM INTERACTION 81

Listing 4-2. Checking for Acceptable File Types

#!/usr/bin/perl

use strict;
use CGI qw/:standard/;

my $q = new CGI;

my $filename = $q->param('uploaded_file');
my $contenttype = $q->uploadInfo($filename)->{'Content-Type'};

print header;
print start_html;
if ($contenttype !~ /^text\/html$/) {

print "Only HTML is allowed<P>";
print end_html;
exit;

} else {
print "Type is $contenttype<P>";

}

print end_html;

When a file with a Content-Type that isn’t text/html is uploaded to this CGI script, its
output indicates that only HTML types are allowed, as shown in Figures 4-4 and 4-5, where
an executable file is uploaded. Figure 4-4 shows an example of choosing to upload an executable
file, and Figure 4-5 shows the output produced from Listing 4-2.

CHAPTER 4 ■ SYSTEM INTERACTION82

Figure 4-4. Uploading an executable file

CHAPTER 4 ■ SYSTEM INTERACTION 83

Protecting Temporary Files
Whenever a file is being uploaded from the web client to the server, the content of that file is
being stored in a temporary location on the server. This creates a number of problems, not the
least of which is that the file, while being stored in that temporary location, might be exposed
to other users local to the server itself. To lessen (but not completely remove) this risk, you can
use the -private_tempfiles pragma when you invoke the CGI namespace—in other words,
with the use CGI lines that usually appear at the beginning of the program. Where before you
might have something like this:

use CGI qw/:standard/;

you now have this:

use CGI qw/:standard -private_tempfiles/;

Working with System Processes
By the phrase “working with system processes,” I’m specifically referring to spawning programs
external to your Perl program—such as cat, ls, and others—in order to obtain information and
interact with the operating system itself.

When working with processes, or really anything outside your Perl program, there is an
inherent danger of introducing unknown and possibly unsafe elements into the program.
Refer to the “Security Considerations with System Interaction” section later in this chapter
for more information about this aspect of programming with Perl.

Since this book does assume at least some familiarity with Perl, it’s logical to assume
that you have some experience with spawning external processes from a Perl program. This

Figure 4-5. Output produced when a file with a Content-Type other than text/html is uploaded

CHAPTER 4 ■ SYSTEM INTERACTION84

section won’t be a rehash of every bit of information about such an undertaking. Rather, this
section will provide some refresher material to ensure we’re all talking the same language.

Executing System Processes from a Perl Program
When Perl runs a system process, it inherits the traits of its parent. Recall from the earlier section
on filehandles that a Perl program inherits the three standard filehandles: STDIN, STDOUT, and
STDERR. The Perl program also inherits other things, like the uid of the parent, the umask, the
current directory, and other such environmental variables. Perl provides the %ENV hash as means
to access and change the environment variables that are inherited by your Perl program. You can
iterate through this hash in the same way that you would any other hash to see the environment
variables.

foreach $key (keys %ENV) {
print "Environment key $key is $ENV{$key}\n";

}

The fork() and exec() methods of firing a system command are the most flexible method of
working with system commands available in Perl. Unfortunately, they’re also the most complex
and arguably the least used, especially when it comes to CGI programming. I’m not going to clut-
ter these pages with a discussion of fork() and exec(), but rather refer you to the perlfunc
document pages for more information about fork(), exec(), kill(), wait(), and waitpid().

Here, we’ll look at using the system() function, run quotes, and system processes as file-
handles.

The system Function
The system() function is a common way to fire off a new process from a Perl program. When
you use the system() function, a new process is created or handed off to /bin/sh, and the Perl
program waits until the process is finished running.

The exit status from the system() function is passed back to the Perl program. It’s impor-
tant to note that this exit status is not the exit status of the command that the system() function
actually runs, but the exit status of the shell in which the command is run. This is an important
distinction because it means that you can’t rely on the exit status of the system() function as an
indication of whether or not the actual command run by the function completed successfully.

Here’s an example of the system() function in action:

system("uptime");

Run Quotes
The next method to execute a system process from within a Perl program goes by a few
names—backquotes, backticks, or run quotes. I’ll be using the name run quotes for no reason
other than that’s the name that I’ve heard used the most often.

Run quotes are different from the system() function in that they return the output of the
command. If you want to capture the output of the command, using run quotes provides an
easy way to accomplish the task, as this example shows:

$uptime = `uptime`;

CHAPTER 4 ■ SYSTEM INTERACTION 85

When executed, the variable $uptime would contain the output from the uptime command:

21:20:07 up 202 days, 5:52, 3 users, load average: 0.01, 0.02, 0.00

Obviously, the output from your uptime command probably will be different.

System Processes As Filehandles
You learned about filehandles earlier in this chapter. You can also use system processes as file-
handles by using the same open() function as you use to create a filehandle. Like file-flavored
filehandles, you can open process filehandles for reading and writing.

The syntax of the open() function is largely the same for processes as it is for files, except
that the pipe character (|) is used instead of the greater-than/less-than characters. The location
of the pipe character determines whether the process handle is opened for reading or writing.

Creating a process handle for reading looks like this:

open(UPTIME, "uptime|");

Creating a handle for writing looks like this:

open(PRINTER, "|lpr ");

Then you could print to that handle, similar to how you print to a filehandle:

print PRINTER "Printing something from this handle\n";

Using System Processes Within a CGI Program
Using a system call from within a Perl-based CGI script is no different from using the same
system call from within another Perl program. The one exception is that you must pay par-
ticular attention to the environment within which the script will be run.

Many times, the environment will be that of the web server user. This means that the Perl
program might not have access to the same commands, files, and other environmental bits as
your user on the same system. A common symptom is that the script will appear to run fine
when you execute it from your shell, but when you attempt to access the script through the
web browser, it won’t work, possibly giving the infamous Internal Server Error message that
Perl programmers everywhere have come to love.

Some web servers use Apache’s suEXEC feature for the execution of CGI scripts. With
suEXEC, CGI scripts are executed as the user who owns the program, which is frequently the
same as your userid for many installations.

Security Considerations with System Interaction
When working with the system—files or processes—from within a Perl program, you must pay
additional attention to your surroundings. It’s quite possible and unfortunately easy to over-
write existing and essential files by opening a file for writing instead of appending.

Whenever you work with anything outside your Perl program, there is always a risk of intro-
ducing unknown data into your Perl program or doing something unintentional to the system
itself. The former is an important concern for developers; the latter is primarily a concern for the
system administrator. For those of us who frequently wear both hats, it’s important to perform

CHAPTER 4 ■ SYSTEM INTERACTION86

rigorous sanity checks against data and against all external system interactions. This means,
among other things, liberal use of the print() function to ensure that the script is doing what
you think it should be doing, and use of the die() function or, at least, the warn() function to
report on unexpected conditions. Otherwise, the program may continue as normal, even though
the file-open operation failed. The die() function is helpful to prevent the script from getting
itself into an unknown state. Also, you’ll want to enable taint mode and strict checking, as
explained in Chapter 1.

Summary
This chapter covered system interactions that involve files and system processes. You work with
files from a Perl script through filehandles. You can open files for reading, writing, or appending.
When creating a filehandle, the file is opened in read mode by default, except when using the
three-argument version of the open() function, and unless you use a single or double greater-
than sign, to indicate either writing or appending, respectively. Whenever you’re working with
filehandles, it’s always a good idea to use the die() function to ensure that the filehandle was
created successfully.

System processes can also be created or spawned from within a Perl program. There
are four methods for working with external system processes from within a Perl program:
the system() function, run quotes (or backquotes), the fork() and exec() functions, and
the open() function. With the system() function or the run quotes method, the Perl pro-
gram waits until the process is finished running. The system() function returns the status
from the shell to the Perl program. Run quotes return the resulting value from any com-
mand(s) run outside the Perl program. You can use the open() function to spawn external
processes in much the same way as you create a filehandle, except that you use the pipe
character (|) to denote that you want to run a process, rather than a filehandle. Putting the
pipe character after the command indicates the process handle is for reading; putting the
pipe character before the command indicates that the process handle is for writing.

When working with system processes, you must pay attention to the environment vari-
ables that the program will inherit when it runs. Since many CGI scripts are executed as the
web server user, the script might not run the same when it is executed by the web server.

When your CGI program is interacting with the system, you need to take great care to
ensure that the program is written with security in mind. This is especially the case for pro-
grams that will be accessed through the Web. The use of taint and strict modes is essential,
along with use of the die() function.

This chapter marks the end of the first part of the book. The next part of the book will look
at some additional interaction that Perl programs can take with the Internet. So far, you’ve seen
how to create web pages with Perl. The next chapter describes how to consume and work with
web pages from within Perl.

Internet Interaction
with LWP and Net::
Tools

P A R T 2

■ ■ ■

LWP Modules

LWP is an abbreviation for library of WWW modules in Perl. LWP modules enable you to
incorporate common web tasks into your Perl program through a set of functions that can
be imported into your namespace.

Using the LWP modules (the LWP, for short), you can perform tasks such as retrieving
web pages, submitting web forms, and mirroring a web site. As with other tasks in Perl, you
could accomplish these same things without the help of the LWP. However, this chapter
will concentrate on using the LWP modules (thus the title). The LWP contains a number of
protocol methods, including ones to work with HTTP, HTTPS, FTP, NNTP, and others. This
chapter looks at how to use the LWP with HTTP and HTTPS.

Getting Started with the LWP
To use the LWP modules, you need to first obtain and install them. Distributions such as
Debian have the LWP prepackaged, which makes installation rather trivial (apt-get install
libwww-perl). If your distribution doesn’t contain a prepackaged version of the LWP, you can
download and install the software manually. The LWP modules are available from your favorite
CPAN mirror.

It’s always a good idea to check whether the modules are already installed prior to going
through the job of installing them. An easy method for testing this is with the following com-
mand, executed from the shell:

perl -MLWP -e 'print "$LWP::VERSION\n"'

You have the LWP installed if you see a version number such as this output:

5.803

If you don’t have the LWP installed, you’ll need to perform the installation in order to
accomplish most of the tasks in this chapter.

The LWP primarily works with the HTTP request and response model. This means that
the module is an excellent choice for retrieving and parsing web pages on the Internet. Here’s
a quick example to get your feet wet. The code (Getua.pl) retrieves a web page and prints it all
to STDOUT.

89

C H A P T E R 5

■ ■ ■

CHAPTER 5 ■ LWP MODULES90

#!/usr/bin/perl -w

use LWP;
use strict;

my $browser = LWP::UserAgent->new(agent => 'Perly v1');
my $result = $browser->get("http://www.braingia.org/ewfojwefoj");
die "An error occurred: ", $result->status_line() unless \
$result->is_success;

#Do something more meaningful with the content than this!
print $result->content;

When you run this code, it will output the raw web page. It will probably fly past on the
screen, likely ending with something like this:

</script>
</body>
</html>

You’ll take a closer look at this code later in the chapter, in the “Retrieving a Web Page”
section.

HTTP from 29,999 Feet
While not quite a high-altitude flyover of HTTP—thus 29,999 feet instead of 30,000 feet—this
section gives you a primer on HTTP’s inner workings. RFC 2616 (which can be found at
http://www.rfc-editor.org/) defines the Hypertext Transfer Protocol (HTTP) and provides
the model under which web traffic operates. HTTP is based on requests and responses. In
HTTP communications, the requester of a document is the client, and the responder is the
server. When you visit a web page in a browser such as Mozilla Firefox, the browser sends the
request to the server, which then responds accordingly.

SOLVING A REAL-WORLD PROBLEM WITH THE LWP

The LWP even helped me to get a console gaming system. In 2004, a popular beverage company had a con-
test that involved collecting a number of points to earn prizes. These prizes were made available online, but
limited quantities of specific prizes were available. For the more popular items, these quantities were quickly
depleted. In order to ensure that I was one of the lucky people to get the item I wanted—a gaming console—
I needed a method to monitor the web page to see when the item became available. Perl to the rescue!

Using the LWP I was able to quickly create a script to look for certain text (“Now Available,” for example)
to appear on the page, and then send an e-mail alert when the text was found. With this script set to check
every five minutes, I got the gaming console.

Of course, this is just one example of how the LWP can be used to solve a real-world problem, albeit
a simple one.

CHAPTER 5 ■ LWP MODULES 91

1. The Host header is quite common in HTTP requests, but that was not always the case. Prior to the
existence of the Host header, every web site with its own host and domain name was required to have
its own IP address. This contributed to IP address space depletion as the Internet grew. By using the
Host header, a single IP address can house thousands of web sites, all using different domain names
and all serving different content.

HTTP Requests
An HTTP request contains the method for the request, information about the resource being
requested, and the protocol version. These three pieces of information are contained on the
first line, known as the request line. Next follow one or more optional header lines, which nor-
mally consist of key:value pairs. Finally, an optional body is included in the HTTP request.
The body of the HTTP request frequently contains form values being passed as part of the
request, but it can include any number of other objects.

Consider this example, which is created with the following command:

telnet www.braingia.org 80

The HTTP request looks like this:

GET / HTTP/1.1
Host: www.braingia.org

The first line is the request line, which contains three pieces of information: the method
(GET), the resource (/, to indicate the root directory or that the default file be served from this
directory), and the protocol version (HTTP/1.1). Following the request line is a header. In this
case, this is the Host header, and it specifies the host (www.braingia.org) should receive the
request. The Host header enables multiple web sites to share the same physical IP. It’s up to
the web server itself, such as Apache, to handle the request correctly, based on the value of
the Host header.1 Notice the extra empty line after the header. This carriage return/line feed
(CRLF) is key for an HTTP request.

HTTP Responses
The web server will receive the HTTP request and respond to it. The first line of the response,
known as the status line, contains the protocol version, followed by a numeric status code and
the text response corresponding to that code.

Following the status line are optional response headers and entity headers. Finally, the
optional body is included after an additional blank line (CRLF), as is the case in the request.

Here’s an example of a response, based on the request shown in the previous section:

HTTP/1.1 200 OK
Date: Wed, 06 Apr 2005 15:47:45 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux mod_mono/0.11
mod_perl/1.26
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1

<body follows here. . .>

CHAPTER 5 ■ LWP MODULES92

As you can see from this example, the first line (the status line) contains the protocol ver-
sion (HTTP/1.1), the status (200), and the text associated with that numeric response (OK). The
numeric status codes are divided into classes based on the first digit in the code, as listed in
Table 5-1.

Table 5-1. HTTP Status Codes

Code Class Type

1nn Informational

2nn Success

3nn Redirection

4nn Client error

5nn Server error

Following the status line are a number of optional header lines, including the date and
the server version, Transfer-Encoding, and Content-Type. A blank line (CRLF) is included, fol-
lowed by the body. In this case, I’ve snipped the body of the response, which was the HTML
and other bits from the actual web page.

■Note Some of the headers that I referred to as optional may be required, depending on the type of
request and response. However, most requests and responses won’t require additional headers. Additionally,
for most HTTP transactions, the body is almost always included, since the body is the content of the web
page itself, but realize that the body is indeed optional according to the RFC 2616, notably for HEAD requests.
For more information about HTTP requirements, see RFC 2616 (http://www.rfc-editor.org/).

Without the LWP, the Perl programmer would need to manually code each portion of the
HTTP request, in much the same way that the CGI programmer would need to code each por-
tion of the HTTP response if it weren’t for the CGI module. The LWP modules provide functions
and object-oriented classes for working with HTTP.

Keeping It Simple with LWP::Simple
The LWP::Simple module gives the programmer a simple interface into common uses of the
LWP for working with web resources. It provides five functions that enable you to use the GET
HTTP method very easily: get(), getprint(), getstore(), head(), and mirror(). These functions
give the programmer just enough control to be dangerous, but they don’t offer full power pro-
vided with the LWP through the LWP::UserAgent module, which I’ll cover after describing the
LWP::Simple functions.

CHAPTER 5 ■ LWP MODULES 93

Get Functions
Most requests for web pages on the Internet use the GET method. LWP::Simple includes func-
tions to perform GET requests on Internet resources. including the aptly titled get() function:

$page = get("http://www.braingia.org/");

Using this function, the body of the resulting resource will be saved to the variable $page.
If the GET request fails, the value of $page will be undefined.

Related to the get() function are two other functions: getprint() and getstore(). The
getprint() function usually returns output directly to STDOUT, but it can return output to
whatever the currently selected filehandle happens to be. Since STDOUT is usually that file-
handle, getprint() will normally just output to the screen. This function is useful for simple
Perl commands executed from the shell, as opposed to commands from within full-blown
Perl programs. For example, a cron job could be created to automatically check the contents
of a web page using a command line such as this:

> perl -MLWP::Simple -e "getprint('http://www.braingia.org/') or die"

The getstore() function takes the output of a web page and automatically stores it in an
external file. Obviously, if you actually want to work with that resulting output from within
your Perl program, you will need to then open the file and read in its contents.

The getstore() function also returns the status of the GET method and sets is_success()
if the status is in the 200 range. It sets is_error() if the status is in the 400 or 500 range. This
effectively means that you can test to ensure that the GET request was successful by looking to
see if is_success() is true. Consider the example shown in Listing 5-1 (Example1.pl).

Listing 5-1. Using is_success() with getstore()

#!/usr/bin/perl -w

use LWP::Simple;
use strict;

my $status = getstore("http://www.braingia.org/","/tmp/braingia");
unless (is_success($status)) {

die "Couldn't retrieve page: $status";
}
open (PAGE, "/tmp/braingia") or die "$!";
while (<PAGE>) {

print();
}
close(PAGE);

If the getstore() function is successful, the raw HTML and other page items will be printed
to STDOUT, similar to the output shown for the first example in this chapter (Getua.pl).

If you would like to see what happens when an error is returned, simply point the URL for
the getstore() function to a file that doesn’t exist, as shown in Listing 5-2 (Example2.pl).

CHAPTER 5 ■ LWP MODULES94

Listing 5-2. Using getstore() to Print an Invalid Page

#!/usr/bin/perl -w

use LWP::Simple;
use strict;

my $status = \
getstore("http://www.braingia.org/nofile.aspx","/tmp/braingia");

unless (is_success($status)) {
die "Couldn't retrieve page: ${$status}";

}
open (PAGE, "/tmp/braingia") or die "$!";
while (<PAGE>) {

print();
}
close(PAGE);

There won’t be a file named nofile.aspx on my web site (I’d be surprised if I ever have
anything named *.aspx on my site), so the getstore() function will return a 404, for a Page
Not Found error, which will, in turn, cause is_success to be false. The script will die and
output the status message:

Couldn't retrieve page: 404 at ./example2.pl line 10.

The Head Function
The HEAD method is normally used to test hypertext links for validity and, when implemented
by the server, returns the header information in the same way that a GET request would. The
HEAD method never returns the body of the resource.

■Caution Unfortunately, the HEAD method is not supported by all web servers and is turned off by
others. This means that the use of the HEAD method is unreliable.

LWP::Simple implements the HEAD method with the head() function. You can use this func-
tion in either a scalar or list context.

In a scalar context, head() returns true or false based on the status of the return code. You
can use this form in an if/then or unless control structure to test for success:

die "Wasn't able to run the HEAD method on the URL" unless \
head('http://www.braingia.org');

CHAPTER 5 ■ LWP MODULES 95

When called in a list context, the head() function returns five items from the response header:

• Content type

• Document length

• Modified time

• Expires

• Server

For example, the head() function might be called in this manner in order to capture the
five values:

($content_type,$doclen,$modified,$expires,$server) = \
head('http://www.braingia.org');

The Mirror Function
The mirror() function works in much the same was as the getstore() function, but also
includes a check to compare the modification time of the local file and the modification
time of the remote resource, based on the If-Modified-Since response header. Listing 5-3
shows an example of the mirror() function in action (Example3.pl):

Listing 5-3. Using the mirror() Function

#!/usr/bin/perl -w

use LWP::Simple;
use strict;

my $url = "http://www.braingia.org/";
my $file = "/tmp/braingiamirrorweb";

my $status = mirror($url,$file);

die "Cannot retrieve $url" unless is_success($status);

This program won’t produce any output to the terminal unless there is an error. If it’s suc-
cessful, there will be a file in /tmp called braingiamirrorweb. Inside that file will be raw output
such as HTML and other bits as found on the web page. The contents will be similar to the
following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/
DTD/xhtml11.dtd">
<html>

CHAPTER 5 ■ LWP MODULES96

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>
<script type="text/javascript">
<!--

The user agent object also has a mirror() method, and the lwp-mirror program imple-
ments the mirror() function. Both of these are discussed in the “Using Mirroring a Web Site”
section later in this chapter.

Getting More Functionality with LWP::UserAgent
The user agent plays a central role in web transactions. The user agent is roughly synonymous
with the browser or client side of an HTTP request and response transaction. The LWP includes
a UserAgent namespace, LWP::UserAgent, which implements many functions and has numer-
ous attributes that you would find in a web browser.

The user agent is frequently used to create a new browser object. This object can have
a number of attributes set to define the behavior and operation of the resulting browser
object. Table 5-2 summarizes the LWP::UserAgent attributes and their corresponding default
values for the browser object.

Table 5-2. LWP::UserAgent Attributes

Attribute Default Value

agent libwww-perl/NNNN (where NNNN is the version)

conn_cache No default

cookie_jar No default

from No default

keep_alive No default

max_redirect 7

max_size No default

parse_head 1

protocols_allowed No default

protocols_forbidden No default

requests_redirectable GET HEAD

timeout 180

To set one or more of the attributes, pass them as a key pair to the new() call when invok-
ing UserAgent. Here’s an example:

use LWP;

my $browser = LWP::UserAgent->new(agent=>'Mozilla');
print "the browser agent is ", $browser->agent(), "\n";

CHAPTER 5 ■ LWP MODULES 97

These attributes can also be changed after the browser object has been created, as shown
here:

use LWP;

my $browser = LWP::UserAgent->new();
$browser->agent("Mozilla");
print "the browser agent is ", $browser->agent(), "\n";

■Caution Some (poorly designed) web sites use the user agent value to prevent users of certain browsers
from accessing the site. As you just saw, the user agent can be trivially changed by the user. Stick to the web
standards set by organizations such as the W3C, and you won’t have to use stupid tricks such as these on
sites that you design.

In the upcoming examples of using the LWP, you’ll see how many of the attributes for the
user agent object are put into action.

Using the LWP
Now that you’ve seen some of the LWP components, this section looks at some common uses
of the LWP. These include retrieving a web page, submitting a web form, handling cookies,
handling password-protected sites, mirroring a web site, and handling proxies.

Retrieving a Web Page
The LWP makes the process of screen scraping rather trivial. Screen scraping refers to pro-
grammatically capturing the document being served in an HTTP request, through a means
other than a standard web browser. A common goal of screen scraping is to look for certain
text on the document and do something if that text is found. Listing 5-4 shows an example of
how to do this (Get.pl).

Listing 5-4. Retrieving a Web Page with get()

#!/usr/bin/perl -w

use LWP::Simple;
use strict;

my $webpage = get("http://www.braingia.org/");

if (($webpage) && (grep {/Steve/} $webpage)) {
print "I found the text\n";

}

CHAPTER 5 ■ LWP MODULES98

This example uses the get() function from LWP::Simple, which enables you to quickly and
easily retrieve a web page using the GET method, as explained earlier in the chapter. The pro-
gram will perform a GET against the web page at http://www.braingia.org/, and then search
for some text within the page, including any HTML, scripts, or other material returned. If that
text is found, the program will print a simple message to STDOUT indicating that it found the
text, something like this:

I found the text

The choices for working with the resulting text from the get() function are limited only by
what you would like to do with the results.

Setting Additional Parameters
The get() function works well for simple GET method requests. However, some sites require
you to set additional parameters, such as authentication, user agent, and other values. When
you need to set these additional parameters, use the LWP::UserAgent class.

Consider the example in Listing 5-5 (Getua.pl), which performs a GET on a URL and also
sets the agent parameter.

Listing 5-5. Setting a User Agent and Retrieving a Web Page

#!/usr/bin/perl -w

use LWP;
use strict;

my $browser = LWP::UserAgent->new(agent => 'Perly v1');
my $result = $browser->get("http://www.braingia.org/ewfojwefoj");
die "An error occurred: ", $result->status_line() unless
$result->is_success;

#Do something more meaningful with the content than this!
print $result->content;

You may recognize this as the example I showed you at the beginning of this chapter.
The program will report itself as “Perly v1” to the web server. You can use this to mimic any
web browser or make up your own, as shown in the example. The output from this program
is raw HTML and JavaScript, as shown previously.

■Note For more information about user agent strings, see the appropriately titled “User-Agent Strings”
document at http://www.mozilla.org/build/revised-user-agent-strings.html.

Setting Timeouts
Sometimes, the web server is slow to respond, or other network-type issues cause the browser
to time out. You can set the timeout of the browser to a value appropriate for your application.

CHAPTER 5 ■ LWP MODULES 99

Recall that the default is 180 seconds. You can set the timeout either when you create the
browser object or at any time during its life. Assume you have a browser object called
$browser. In this example, you set the timeout to 30 seconds, instead of the default 180:

$browser->timeout(30);

Controlling Browser Redirects
Browser objects created through the LWP::UserAgent class accept HTTP redirects for the GET
and HEAD methods. You can change this behavior to accept redirects for other combinations of
HTTP methods or disallow redirects entirely. The requests_redirectable attribute accepts
a list of HTTP methods that can be redirected:

$browser->requests_redirectable([\@methods]);

This list is inclusive, so if you merely call the function with one method as an argument,
you overwrite what’s already there. To accept redirects for the POST method (discussed in the
“Submitting a Web Form” section a little later in this chapter), you add it to the list by calling
requests_redirectable:

push @{$browser->requests_redirectable}, 'POST';

Realize that the requests_redirectable attribute already contains two values: GET and
HEAD. Therefore, if you want to add a method to that list, you must use a method such as push
(as in this example). If you don’t push a new value onto the stack, you’ll be replacing what’s
already there. This can cause no end to confusion.

Based on that note of caution, it’s sometimes helpful to see if a particular method will
indeed accept a redirect for a given browser object. A call to the redirect_ok() method will
return true if a redirect would be permitted for the given method. Consider this example:

if ($browser->redirect_ok(GET)) {
print "The browser object would accept a redirect for GET\n";

}

Sending Additional Headers
In some cases, you may need to specify additional header lines as part of the request for a URL.
In these instances, you can send them along with the request as key/value pairs. For example,
a GET method using the get() function would normally look like this:

$browser->get($url);

To include additional headers, place them after the URL, as in this example:

$browser->get($url, Header => Value, Header => Value . . .)

A use for this might be to send the acceptable character set to the server:

$browser->get($url, 'Accept-Charset' => 'iso-9859-1');

Cloning the Browser
If you already have a browser object set up in your program and configured as you like it, you
can use the clone() method to quickly create a duplicate of the browser object. Assume that

CHAPTER 5 ■ LWP MODULES100

you have a browser object, $browser, already created. The following code would create a dupli-
cate of that browser object:

$browser2 = $browser->clone();

Submitting a Web Form
Two HTTP methods are used to pass form variables into a script on the web: GET and POST. Using
GET, the parameters are passed as part of the URL itself in name=value pairs. This type of submis-
sion using the LWP is rather trivial and can be accomplished in a number of ways through various
GET methods, as you’ve already seen in this chapter.

However, even though GET is the most commonly used method, the POST method is also
frequently used, especially when working with web forms or web services.

Using GET, any parameters passed into a CGI application are passed via the URL. This can
be problematic for three main reasons:

• Some browsers and servers limit the length of the URL, thus making complicated
parameter passing more difficult.

• All characters in the URL must be encoded in order to be safe for URLs.

• Parameters passed on the URL are visible to anyone listening, regardless of whether or
not SSL (HTTPS) is used.

In contrast, using POST, all of the parameters are passed as part of the message body. This
alone effectively removes all three problems with GET. Parameters passed via POST aren’t lim-
ited by length, nor do they need to be encoded. And since the parameters are passed within
the body, they are indeed encrypted when passed over SSL.

Using the LWP post() method, the name=value pairs are passed as an array—well, actually
as a reference to an array, as you’ll see shortly.

When working with forms, there are a number of form elements that appear inside
the <form></form> tags on the page. For example, assume a web form located at http://
www.example.com/form.cgi contains text boxes to fill in with information such as the user’s
name, e-mail address, and zip code. The name=value parameters might look like this for a filled-
in form:

name=Steve Suehring
email=suehring@braingia.com
zip=54481

You can send these in a POST request through the LWP by placing them as arguments
within the call to the post() method of the browser object, as shown here:

$result = $browser->post('http://www.example.com/form.cgi',
[

'name' => 'Steve',
'email' => 'suehring@braingia.com',
'zip' => '54481'

]);

To analyze a web form, the first task is to determine the URL of the target. This is defined
in the opening <form> tag as the “action” for the form. From there, it’s a matter of determining

CHAPTER 5 ■ LWP MODULES 101

which parameters, if any, are required, and the corresponding values for them. Of course,
since this is Perl, it’s common to substitute variables for the parameter values themselves.
So instead of hard-coding the zip code, you might want to set $zip as a scalar variable that
changes for the web form. Naturally, what you do with the POSTed data is up to you and the
form itself.

Handling Cookies
As explained in Chapter 1, cookies are used by web sites to track state and other information
about the visiting browser or user agent. It’s up to you to work with the cookies that are set and
expected by the web site.

The LWP’s cookie_jar attribute is used with sites that set and read browser cookies. Using
the cookie_jar attribute, you can store cookies both in memory or out to a file. When I moni-
tored a site to win a gaming console (as I described earlier in the chapter), I used an existing
cookie store. Since that site required authentication using a cookie, I was able to use the cook-
ies file from Firefox to successfully authenticate to the site from within the script.

The cookie_jar attribute can read cookies based solely in memory, or it can use cookies
in a file. If the cookies are based in memory, they exist only as long as the life of the user agent
object created within the program itself. If the cookies are based in a file, they become persist-
ent and can be saved and read between multiple user agents and multiple executions of the
program itself.

You can create a temporary cookie store in memory by invoking the HTTP::Cookies object.
For example, assume a browser object named $browser. Creating a memory-based cookie store
would look like this:

$browser->cookie_jar(HTTP::Cookies->new);

On the other hand, using a file would look like this:

use LWP;

my $browser = LWP::UserAgent->new();
my $cookie_jar = HTTP::Cookies->new(

'file' => '/home/suehring/cookies.txt'
);
$browser->cookie_jar($cookie_jar);

Handling Password-Protected Sites
Some sites require authentication through a username and password in order to sign in and
use the resources found there. This authentication is provided or indicated by a 401 Authoriza-
tion Required HTTP response. Normally, a dialog box prompting for authentication pops up,
as opposed to a username and password web page. The LWP includes attributes to work with
sites that use basic authentication. Using the credentials() method, you add these attributes
to a given browser object programmatically. The credentials() method looks like this:

$browser->credentials('server:port','realm','username'=>'password');

For example, the site www.example.com has a subscribers area for which you must supply
credentials. This site uses a realm of Subscribers.

CHAPTER 5 ■ LWP MODULES102

$browser->credentials('www.example.com:80',
'Subscribers',
'suehring' => 'badpassword');

Now when the $browser object is used to access a URL within the www.example.com domain
that prompts for credentials, the credentials specified in the example will be sent.

The credentials themselves die at the end of the browser object’s life. You can store as
many credentials inside a browser object as you need, based on the server name and realm
name for the protected resource.

Mirroring a Web Site
Earlier in this chapter, I mentioned LWP::Simple’s mirror() function, as well as the lwp-mirror
program. Both of these work well for mirroring an entire web site. The browser object also has
a mirror() method that enables a site to be mirrored, while taking advantage of the extra power
of the object’s interface.

The lwp-mirror program does an excellent job of mirroring a site in a sane, easy-to-
understand manner. I recommend the lwp-mirror program for nearly all mirroring
operations. lwp-mirror is called from your shell and accepts a URL and an output file as
arguments:

lwp-mirror <url> <output_file>

Here is an example:

lwp-mirror http://www.braingia.org/ local_braingia_index.html

The mirror() method on the browser object has two requirements as well: the URL and
the output file. Here is an example of using this method:

$browser->mirror('http://www.braingia.org','local_braingia_index.html');

Handling Proxies
Proxies are sometimes required to access Internet services. The LWP includes a set of methods
for working with proxies that enable you to set a proxy for a given protocol or set of protocols.
When a proxy is required on a given system, it’s not uncommon for it to be set among the dif-
ferent environment variables in the shell. The LWP can use the shell environment variable for
proxy. A call to the env_proxy() method will look for environment variables that indicate the
proxy server to use, such as http_proxy, as in the following example:

$browser->env_proxy();

It doesn’t hurt to call this method if nothing is set for the proxy environment variable—the
proxy value for the browser object will still be empty.

The proxy() method accepts two arguments: the protocol and the actual proxy to use.
Here is its format:

$browser->proxy(protocol, proxy_server);

CHAPTER 5 ■ LWP MODULES 103

For this example, assume that you have a browser object called $browser and proxy server
called proxy.example.com. If you want to set the HTTP proxy server for use within the program,
the invocation of the proxy() method looks like this:

$browser->proxy("http","http://proxy.example.com");

It’s quite common for a proxy server to be used for URLs that are outside the local net-
work. Inside the network, a proxy server should not be used. For these cases, the LWP
includes a no_proxy() method that accepts a comma-separated list of domains for which no
proxy server should be used. Assume that you have a server located at local.example.com
for which you want direct access, as opposed to access through the proxy. The no_proxy()
method call looks like this:

$browser->no_proxy("local.example.com");

Calling no_proxy() with an empty list clears out the list of hosts:

$browser->no_proxy();

Removing HTML Tags from a Page
As you’ve undoubtedly seen if you’ve followed the examples in this chapter, the content that
comes back from a GET request is the raw, uncensored HTML (and other language) content
from the web server. To say that this is difficult for a human to read and interpret is an under-
statement. Unfortunately, there is no surefire method for extracting the useful text from a web
page. However, you have some options for retrieving the text from a page.

For example, Listing 5-6 shows the Get.pl example shown earlier in the chapter, but mod-
ified to use HTML::FormatText to produce output that is more human-friendly.

Listing 5-6. Using HTML::FormatText to Retrieve the Text from a Page

!/usr/bin/perl -w

use strict;
use HTML::TreeBuilder;
use HTML::FormatText;
use LWP::Simple;

my $webpage = get("http://www.braingia.org/");

my $htmltree = HTML::TreeBuilder->new->parse($webpage);

my $output = HTML::FormatText->new();
print $output->format($htmltree);

CHAPTER 5 ■ LWP MODULES104

Recall that when run before, the output from web page retrieval looked like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/
DTD/xhtml11.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>

Now, rather than outputting the raw HTML and other bits, with the help of HTML::FormatText,
the output is the actual text on the web page, which currently looks like this:

Braingia.org - Web Site for Steve Suehring
==

Home | LinuxWorld Magazine | Google Current Work Software My Bookshelf
Older Projects Webnotes Contact

Intarweb

As you can see, the output is much easier to read and parse by a human.

■Tip Using the Lynx web browser with the -dump option also gets the text on the web page.

The easiest (or so it may seem) method for working with the text from a web page is by
using regular expressions. Since HTML and other languages are known entities, it’s almost
always possible to work up a regular expression to extract the text that you need.

There are also Perl modules to assist with the extraction of text from web pages. The
aptly titled HTML::Parser module along with HTML::Tokenizer serve this purpose. These
modules can be quite cumbersome to use though, and are highly specialized at that. The
WWW::Mechanize Perl module provides a good interface to enable browsing through a Perl
program as well.

Both regular expressions and the parsing modules have their limitations. Regardless of
which method you choose, each page that you need to parse will be unique and offer its own
set of challenges.

Security Considerations with the LWP
When working with the LWP, you must take extra caution to not cause unnecessary traffic. It’s
quite easy to begin a mirror process and consume a lot of disk space or network bandwidth. In
addition, the administrators of the site being mirrored might think the site is under attack and
take action accordingly.

CHAPTER 5 ■ LWP MODULES 105

Obviously, the same rules that apply to other Perl programming apply when you’re using
the LWP. Don’t run as root unless absolutely necessary, be mindful of what you’re doing so you
don’t overwrite files, and so on.

If you’re allowing uploads through web forms, pay special attention to where those files
are uploaded to and what the user can do with those files once uploaded. Numerous attacks
have begun through a file-upload interface.

Summary
This chapter looked at some forms of interaction between a Perl program and the Internet
using the LWP modules. You saw how to set up a Perl-based browser, along with attributes
such as the user agent. You retrieved web pages and also learned about the GET and POST
methods.

More Internet interaction through Perl is on the way in the next chapter. Where this chap-
ter focused primarily on the LWP and web interaction, the next chapter will expand into other
protocols, such as POP3, SMTP, and others.

107

C H A P T E R 6

■ ■ ■

Net:: Tools

The things that a programmer can do with Perl never cease to amaze me. The area of network
programming is no exception. Of course, it’s quite possible to get down and dirty with Perl and
write your own network servers and clients. I find this to be rather enjoyable, which should tell
you something about me. However, sometimes I value simply getting the work done, rather
than the process of writing low-level client/server code. Truthfully, that’s most of the time.
There’s no need to reinvent the wheel when it comes to working with Simple Mail Transfer
Protocol (SMTP), Domain Name System (DNS), Post Office Protocol version 3 (POP3), Inter-
net Control Message Protocol (ICMP), Lightweight Directory Access Protocol (LDAP), and
other networking protocols.

This chapter takes a look at some of the tools available to the Perl programmer for working
with various Internet protocols (aside from HTTP): POP3 and SMTP for working with e-mail,
DNS, and ICMP for ping. These are just a few of the numerous Net:: modules available. For
example, other Net:: modules allow you to query an LDAP directory (and interoperate with
Microsoft’s Active Directory), query the whois database of domain names, work with FTP, and
more. The libnet tools on CPAN (http://search.cpan.org/~/libnet-1.19/) provide a listing of
some of these tools.

Checking E-Mail with Net::POP3
POP3 (defined by RFC 1939) is a popular protocol used to check e-mail. It’s used to retrieve e-mail
from a server, typically at an Internet provider, where the e-mail is stored or spooled. When you
check your e-mail, a username and password are sent to the server, and the server sends back
a list of messages and, optionally, the e-mail content itself. POP3 is not a protocol to send e-mail;
that’s SMTP. POP3 is used only to retrieve e-mail that’s being stored on a POP3 server.

The Net::POP3 module is the primary module used to check e-mail with the POP3 proto-
col. However, in the tradition of Perl, there are several packages available that can work with
e-mail. One such package is Mail::Box, which I’ll cover after the discussion of Net::POP3.

The Net::POP3 module is available with many Linux distributions and also from your
favorite CPAN mirror. As with other modules, a use statement is the best way to import the
Net::POP3 namespace into your Perl program:

use Net::POP3;

CHAPTER 6 ■ NET: : TOOLS108

1. If an environment variable isn’t set, you could set one. However, I don’t see a particular advantage to
doing so as opposed to just defining it within your program.

Creating a POP3 Object
Like the browser object you encounter when working with the LWP modules (as described in
the previous chapter), the Net::POP3 module works by creating a POP3 object. You create this
object with a call to the new() method. The new() method returns a reference to the newly cre-
ated object, which you’re likely to store inside a scalar variable. Here’s an example:

use Net::POP3;
$pop3conn = Net::POP3->new('mail.example.com');

The host, as provided in the example as mail.example.com, isn’t required when you call
the new() method. If the host is not set when you call the new() method, it must be configured
in Net::Config within the POP3_Hosts parameter. However, you’ll almost always define it in the
program, as shown in the example.

Naturally, you can store the host inside its own variable. It’s common to do so by storing
the host variable in the beginning of the program or getting it from an external source. For
example, you might store the host in a scalar variable called $pophost. You then invoke the
call to new() like this:

$pop3conn = Net::POP3->new($pophost);

Sometimes, the mail server is stored in an environment variable.1 It might be called
MAIL_SERVER or POP3_SERVER. The name of the environment variable depends on your system;
there is no set standard. Use the shell command printenv or export to see your environment
variables. Alternatively, you can iterate through the environment variables from within your
Perl program with the following code (introduced in Chapter 4):

foreach $key (keys %ENV) {
print "Environment key $key is $ENV{$key}\n";

}

Here’s an example that sets the POP3 host for the call to the new() method based on the
environment variable, assuming an environment variable of POP3_SERVER:

$pop3conn = Net::POP3->new($ENV{POP3_SERVER});

The host can also be an array of POP3 hosts. If an array or list of hosts is given, the program
will try each in turn. This is not a common scenario. Usually, the mail spool is stored on one
server, and if there are multiple servers, the correct one is chosen automatically.

For the rest of this discussion, I’ll use the variable $pop3conn to refer to the Net::POP3 con-
nection object created here.

Setting and Getting Other POP3 Connection Parameters
Four other parameters are available when you’re setting up a connection with Net::POP3. You
can set any of the parameters when you create the connection object or later.

CHAPTER 6 ■ NET: : TOOLS 109

When you set options at the time of connection object creation, they are set as name =>
value pairs. For example, to set the timeout parameter to 30 seconds on creation of the con-
nection object, do this:

$pop3conn = Net::POP3->new("mail.example.com", timeout => 30);

To set more than one parameter, separate them with a comma:

$pop3conn = Net::POP3->new("mail.example.com", timeout => 30, debug => 1);

Let’s look at the Net::POP3 connection parameters host, timeout, ResvPort, and debug. The
following examples shows setting options after the connection object has been created.

Host
The host must be set at creation of the POP3 object. You can find out the name of the current
host for a given POP3 connection object by calling the host() method with no arguments:

$pop3conn->host();

Recall the example earlier in this section that created a POP3 connection to mail.example.com.
Now consider this example that prints the name of the current host:

use Net::POP3;
$pop3conn = Net::POP3->new('mail.example.com');
print "The POP3 Server is" . $pop3conn->host() . "\n";

Timeout
The timeout value is the amount of time to wait for a response from the POP3 server. The default
is 120 seconds. Like other parameters, it can be set at creation or set later by calling the option
directly. This example sets the value to 30 seconds:

$pop3conn->timeout(30);

ResvPort
Don’t be confused by the ResvPort option. This option is used to set the local port from which
connections will originate. It is not used to set the port of the server. ResvPort can be useful if
you have a firewall that allows only certain ports as source ports, for example (though that would
be quite an uncommon configuration).

Debug
The debug option can be a lifesaver when you’re having trouble getting the POP3 connection to
work. When you set debug to 1, additional output is printed to STDOUT, including the actual
POP3 conversation between the program and the server. Like other options, debug can be set at
the time of object creation or later, within the program. The option is either disabled (default or
0) or enabled by setting the value to 1:

$pop3conn->debug(1);

CHAPTER 6 ■ NET: : TOOLS110

The output from debug looks something like the following (yours will vary). In this exam-
ple, you can see the calls to various other Perl modules, including Net::Cmd and IO::Socket.
The actual POP3 conversation follows, and it shows that I don’t have any mail waiting.

Net::POP3>>> Net::POP3(2.28)
Net::POP3>>> Net::Cmd(2.26)
Net::POP3>>> Exporter(5.58)
Net::POP3>>> IO::Socket::INET(1.27)
Net::POP3>>> IO::Socket(1.28)
Net::POP3>>> IO::Handle(1.24)
Net::POP3=GLOB(0x81659cc)>>> USER suehring@braingia.net
Net::POP3=GLOB(0x81659cc)<<< +OK
Net::POP3=GLOB(0x81659cc)>>> PASS
Net::POP3=GLOB(0x81659cc)<<< +OK
Net::POP3=GLOB(0x81659cc)>>> STAT
Net::POP3=GLOB(0x81659cc)<<< +OK 0 0

Banner
The banner() method returns the server’s connection banner. Calling banner() looks like this:

$pop3conn->banner();

Note that not all POP3 servers will return a value here. So while the call will not fail, you
won't see any output either!

Checking E-Mail
Up until this point, you’ve seen only the methods and options related to the connection object
itself. This means that the e-mail is still sitting on the server waiting to be picked up.

You check for e-mail receipt with the login() method. When you receive mail (the login()
method returns more than 0), you have a choice of what to do with the mail. You can obtain
a list of messages and their sizes with the list() method, you can retrieve the messages with
get(), or you can do both. I’ll show you how to do both. Just be aware that you aren’t required
to obtain a list of messages before retrieving them.

Login
Once you’ve created the connection object, you log in to the server by using the login() method.
The login() method sends the USER and the PASS commands to the POP3 server, according to
the protocol specification. Neither the username nor the password is required. If you don’t pro-
vide the password, it will be read using Net::Netrc. If you don’t give the username, the currently
logged-in user will be sent as the username. In practice, it’s just as easy and usually cleaner to
specify both within the program. Doing so avoids confusion later when you need to migrate the
code to a different machine or user, or just have to look at it three years later to debug it.

The basic syntax for the login() method is as follows:

$pop3conn->login(username,password);

CHAPTER 6 ■ NET: : TOOLS 111

When login() is called in a numeric context, the result is the number of messages waiting
on the server for the user. If there is an error with authentication, the login() method will
return undef. Therefore, you can determine if you have messages waiting by using an if/then
control statement:

if ($pop3conn->login($username,$password) > 0) {
print "You've Got Mail!\n";

}

■Note Other methods for authentication include apop() and auth(), which provide additional security
but also have additional requirements. For more information about these methods, see the Net::POP3 doc-
umentation at http://search.cpan.org/~gbarr/libnet-1.19/Net/POP3.pm.

The user() and pass()methods send the username and password for the connection by
sending the POP3 USER and PASS commands. Their arguments are, not surprisingly, the username
and the password, respectively. These two methods perform essentially the same functions as the
login()method, which also sends the USER and PASS commands to the POP3 server. The login()
method returns the number of messages, whereas these two methods do not.

List
The aptly titled list() method returns a list of the messages and their corresponding sizes.
Actually, list() can also return the size of an individual message if it’s called with an argument.
For the first case, list() returns a reference to a hash. The hash contains the message numbers
as keys and their sizes as values. Building on the example shown in the previous section, this
code obtains a list of messages and prints their message numbers and sizes:

$msgs = $pop3conn->list();
foreach $msg (keys %$msgs) {

print "Message $msg is $$msgs{$msg} bytes\n";
}

Listing 6-1 (Pop3complete.pl) shows a more complete example.

Listing 6-1. Listing POP3 Messages

#!/usr/bin/perl -w

use strict;
use Net::POP3;
my $username = "user\@example.com";
my $password = "password";

CHAPTER 6 ■ NET: : TOOLS112

my $pop3conn = Net::POP3->new("mail.example.com", timeout => 30);
if ($pop3conn->login($username,$password) > 0) {

print "You've Got Mail!\n";
my $messages = $pop3conn->list();
foreach my $msg (keys %{$messages}) {

print "Message $msg is $messages->{$msg} bytes\n";
}

}
$pop3conn->quit

The quit() method closes the connection. I’ll explain it further in the “Deleting E-Mail
and Quitting” section.

The output from the program will be similar to the following, which shows that I happen
to have 12 messages in this mailbox:

You've Got Mail!
Message 6 is 3353 bytes
Message 11 is 4234 bytes
Message 3 is 7721 bytes
Message 7 is 2385 bytes
Message 9 is 1578 bytes
Message 12 is 257788 bytes
Message 2 is 4700 bytes
Message 8 is 1659 bytes
Message 1 is 3723 bytes
Message 4 is 1312 bytes
Message 10 is 1832 bytes
Message 5 is 2145 bytes

Get
You actually retrieve the message with the get() method, called with the message number as
an argument. The get() method returns a reference to an array of the message itself. You can
do as you please with this array reference, including simply printing the messages. Listing 6-2
(Pop3example2.pl) shows an example that retrieves a message and prints it to STDOUT.

Listing 6-2. Getting and Printing POP3 Messages

#!/usr/bin/perl -w

use strict;
use Net::POP3;
my $username = "user\@example.com";
my $password = "password";

my $pop3conn = Net::POP3->new("mail.example.com", timeout => 30);
my $nummsgs = $pop3conn->login($username,$password);

CHAPTER 6 ■ NET: : TOOLS 113

if ($nummsgs > 0) {
print "There are $nummsgs messages waiting\n";
my $message = $pop3conn->get(12);
print "@{$message}";

}
$pop3conn->quit;

In this example, the number of messages available is stored in a variable called $nummsgs.
Then the $nummsgs variable is checked to see if it’s greater than zero. If it is, the number of mes-
sages waiting is printed, followed by message number 12. Note that I already knew how many
messages were waiting and merely hard-coded message number 12 into this example. It’s more
likely that you’ll want to iterate through each of the messages with a for loop, as shown in
Listing 6-3 (Pop3example3.pl).

Listing 6-3. Retrieving Messages with Net::POP3

#!/usr/bin/perl -w

use Net::POP3;
use strict;
my $username = "user\@example.com";
my $password = "password";

my $pop3conn = Net::POP3->new("mail.example.com", timeout => 30);
my $nummsgs = $pop3conn->login($username,$password);
for (my $i=1;$i<=$nummsgs;$i++) {

my $message = $pop3conn->get($i);
print "@{$message}";
print "retrieved message $i\n\n\n";

}
$pop3conn->quit;

In this example, each message is retrieved in turn and printed to STDOUT.

■Note The getfh() method performs the same function as get(), but gives a filehandle, which can then
be read to retrieve the given message.

Along with the get() and list(), a couple other methods stand out as being useful for
working with POP3 e-mail: uidl() and top(), which get message IDs and headers, respec-
tively. You might also find popstat() useful if you want to know the size of the mailbox.

Uidl
Many POP3 mail clients use the uidl() method to obtain a unique identifier for a given mes-
sage. In this way, the program can keep track of which messages have been downloaded, so
that they aren’t downloaded multiple times by the same program. This would apply only when

CHAPTER 6 ■ NET: : TOOLS114

the POP3 client program doesn’t delete the messages after downloading them, since the values
obtained from uidl() are message-dependent. Therefore, you wouldn’t use uidl() values if
your program deletes the e-mail from the server after downloading it.

In order to take advantage of the values returned from uidl(), the program must keep
track of which IDs have been seen, usually across multiple executions of the program. For
a Perl program, this would likely mean storing the IDs in an external file, but the IDs could be
stored in any valid location that can be accessed from a Perl program, such as a relational
database or a DBM hash file.

Like the list() method, uidl() returns the ID for a given message when called with an
argument of the message number, and it returns a reference to a hash with the message num-
ber as the key and the ID as the value when called with no argument.

Consider the example in Listing 6-4 (Pop3example4.pl), which looks nearly the same as
the example for the list() method. This example uses uidl(), and then prints each ID.

Listing 6-4. Printing Message IDs

#!/usr/bin/perl -w

use Net::POP3;
use strict;
my $username = "user\@example.com";
my $password = "password";

my $pop3conn = Net::POP3->new("mail.example.com", timeout => 30);
if ($pop3conn->login($username,$password) > 0) {

my $messages = $pop3conn->uidl();
foreach my $msg (keys %{$messages}) {

print "Message $msg is ID: $messages->{$msg}\n";
}

}
$pop3conn->quit;

From here, you could store these IDs for later use or use them within the program, if the
program were a long-running process. Here’s typical output from this program:

Message 6 is ID: 5cb794e9ba2c45b2
Message 11 is ID: ac9375c45b8aca77
Message 3 is ID: 822ac7377f459093
Message 7 is ID: 3dadb5032fca6952
Message 9 is ID: e10e0bfe628f74ff
Message 12 is ID: 1420b979566679a6
Message 2 is ID: 770a0ebe8ae76b68
Message 8 is ID: b77fbf3630ea720e
Message 1 is ID: d0065fbe85999bc3
Message 4 is ID: 2e3331c08c34e0a0
Message 10 is ID: 8d63341d100e1007
Message 5 is ID: b5fc539c28da4afb

CHAPTER 6 ■ NET: : TOOLS 115

Top
The top() method retrieves the header of the message along with, optionally, a number of lines
from the body of the message as well. This method is useful to look at the Subject line or From
line of an e-mail message for something like spam filtering or just general filtering. Recall the
code example given to print each message to STDOUT. Using that code as a base, the example
in Listing 6-5 (Pop3example5.pl) uses top() to retrieve the header of the message, and then per-
forms a simple grep to look for the Subject line of each message, outputting that to STDOUT.

Listing 6-5. Printing Subject Lines

#!/usr/bin/perl -w

use Net::POP3;
use strict;
my $username = "user\@example.com";
my $password = "password";

my $pop3conn = Net::POP3->new("mail.example.com", timeout => 30);
my $nummsgs = $pop3conn->login($username,$password);
for (my $i=1;$i<=$nummsgs;$i++) {

my $message = $pop3conn->top($i);
print "Message $i: ";
print grep (/^Subject:/, @{$message});

}
$pop3conn->quit;

The output looks something like this:

Message 1: Subject: RE: Security consulting
Message 2: Subject: Re: Security consulting
Message 3: Subject: RE: Security consulting
Message 4: Subject: Meeting
Message 5: Subject: RE: Account costs
Message 6: Subject: Re: Introduction
Message 7: Subject: Re: Web design work
Message 8: Subject: Hello
Message 9: Subject: Partners Pub Website Update
Message 10: Subject: Perl help!
Message 11: Subject: Re: Perl consulting
Message 12: Subject: Files for site

Popstat
The popstat() method gives the number of messages along with the size of the mailbox. These
are returned in list context so could be stored in an array or into individual scalars, as in this
example:

CHAPTER 6 ■ NET: : TOOLS116

($messages,$size) = $pop3conn->popstat();
print "There are $messages messages totaling $size bytes\n";

Deleting E-Mail and Quitting
At this point, you’ve seen how to set up a connection object, as well as how to log in to the server
and view messages. The normal POP3 conversation involves two additional tasks: deleting the
messages and quitting or closing the connection. These are accomplished through the delete()
and quit() methods, respectively.

Delete
It’s important to note that the message isn’t actually deleted when you call delete(), but only
marked to be deleted when the connection is closed. You could then, in theory, use the reset()
method to unmark the messages to be deleted, thus preventing them from being deleted. In
practice, the reset() method is not always helpful, since the connection to the server is often
closed immediately after you issue delete().

To mark a message for deletion, simply call the delete() method with the number of the
message as the argument. For example, to mark message number 1 for deletion, the call would
look like this:

$pop3conn->delete(1);

Now when you close the connection using the quit() method, the messages that have been
marked as deleted will be purged from the remote mail spool.

Quit
You’ve seen the quit() method used throughout the examples in the chapter. Here it is again:

$pop3conn->quit();

But wait! What if you wanted to prevent that message from being deleted? As I noted in
the previous section, a call to the reset() method prior to closing the connection will prevent
the message from being purged:

$pop3conn->reset();

Note that if you don’t use the quit() method to actually close the connection, the messages
will never be purged, even after the TCP session times out for the connection. This behavior
might vary depending on the implementation of the POP3 server, so I recommend explicitly
closing the connection.

■Note Other methods are available with Net::POP3. For more information about those methods, see the
documentation for Net::POP3 at http://search.cpan.org/~gbarr/libnet-1.19/Net/POP3.pm or
perldoc Net::POP3.

CHAPTER 6 ■ NET: : TOOLS 117

Checking E-Mail with Mail::Box
Mail::Box is another package, available from CPAN, for working with e-mail in Perl. In many
ways, Mail::Box provides a more elegant solution to working with e-mail in Perl than the
Net::POP3 package. Mail::Box is likely more appropriate for heavy lifting of POP3 and other
e-mail accounts, insofar as it has multiple classes for working with messages, message bodies,
headers, and so on. Mail::Box can also work with multiple formats for mailboxes, such as
Maildir format, mbox format, and POP3.

■Note I cover Mail::Box only briefly here, but Mail::Box is a large and powerful package. See the
Mail::Box web site at http://perl.overmeer.net/mailbox/ for more information about the package.
Another package you might find useful is Mail::Internet, which, like Mail::Box, can be found on CPAN.

Recall the earlier example in Listing 6-2, which showed the use of Net::POP3 to check e-mail
and print the number of messages. Listing 6-6 (Mailbox.pl) shows that same functionality using
Mail::Box.

Listing 6-6. Using Mail::Box to Print the Number of Messages

#!/usr/bin/perl -w

use strict;
use Mail::Box::POP3;

my $folder = Mail::Box::POP3->new(server_name => 'mail.example.com',
password => 'password', username => 'user@example.com') or die "$!";

my $nummsgs = $folder->messages;
print "There are $nummsgs messages waiting\n";

Mail::Box works with the concepts of folders. To Mail::Box, e-mail is essentially one or
more folders containing zero or more messages. In the example, a virtual folder object is created,
and the number of messages are determined by calling the messages() method in scalar context:

my $nummsgs = $folder->messages;

You can retrieve individual messages by calling the message by its index, as shown in
Listing 6-7 (Mailbox2.pl).

CHAPTER 6 ■ NET: : TOOLS118

Listing 6-7. Printing an Individual Message

#!/usr/bin/perl -w

use strict;
use Mail::Box::POP3;

my $folder = Mail::Box::POP3->new(server_name => 'mail.example.com',
password => 'password', username => 'user@example.com') or die "$!";

$folder->message(2)->print;

The example prints message number 2 to STDOUT.
To print subject lines, use the get() method, as shown in Listing 6-8 (Mailbox3.pl).

Listing 6-8. Printing Subject Lines

#!/usr/bin/perl -w

use strict;
use Mail::Box::POP3;

my $folder = Mail::Box::POP3->new(server_name => 'mail.example.com',
password => 'password', username => 'user@example.com') or die "$!";

my @messages = $folder->messages;
foreach my $message (@messages) {

print "Subject: ", $message->get('Subject') or "<no subject>";
print "\n";

}

The output from Listing 6-8 is similar to the output when using Net::POP3 to retrieve the
subject lines (Listing 6-5), as shown earlier in the chapter.

Sending E-Mail with SMTP
Up until this point, you’ve seen examples of only how to check e-mail. Obviously, that’s only half
of the equation. Sending e-mail is accomplished using SMTP (defined in RFC 2821). There are
multiple ways for sending e-mail from a Perl script, including opening a process handle to the
local mailer (such as Sendmail or Postfix) and sending the mail to the handle, calling a system
process to a local mailer, or using one or more Perl modules for the task. This section shows how
to send e-mail by using one of the modules: Net::SMTP.

The Net::SMTP module was written by the same author as the Net::POP3 module. The
Net::SMTP module has essentially the same types of operations as the Net::POP3 module,
except, obviously, this module talks the SMTP protocol.

CHAPTER 6 ■ NET: : TOOLS 119

Creating an SMTP Object
Like Net::POP3, Net::SMTP has the new() constructor, which you use to create a Net::SMTP object.
The new() constructor requires the hostname of the mail server, as shown in this example:

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');

Also, as with the new() constructor in Net::POP3, you can set options when calling the new()
constructor, or you can set options later. The host, as provided in the example as mail.example.com,
isn’t required when you call the new() method. If you don’t set the host when you call the new()
method, then you must configure it in Net::Config within the SMTP_Hosts parameter. However, as
with the POP3 server host, you’ll almost always define it in the program, as shown in the example.

You’ll notice that an option, hello, is set at the time of creation. This option is important
for the connection, because the default, localhost.localdomain, may cause the e-mail to be
blocked by the SMTP server. I usually set the hello option explicitly on the creation of the
SMTP connection object.

You can also store the server inside its own variable. It’s common to do so by storing the
server variable in the beginning of the program or by getting it from an external source. For
example, you might store the host in a scalar called $smtpserver, and then invoke the call to
new() like this:

$smtpconn = Net::SMTP->new($smtpserver);

Sometimes, the mail server is stored in an environment variable. This is much more com-
mon than storing the POP3 server as an environment variable. The name of the environment
variable depends on your system; as with a POP3 server environment variable, there is no set
standard. It might be called MAIL_SERVER or SMTP_SERVER. Use the shell command printenv or
export to see your environment variables. Alternatively, you can iterate through the environ-
ment variables from within your Perl program with this code (as discussed in Chapter 4):

foreach $key (keys %ENV) {
print "Environment key $key is $ENV{$key}\n";

}

■Tip You could also sort the hash: foreach $key (sort keys %ENV).

Here’s an example that sets the SMTP server for the call to the new() method based on the
environment variable, assuming an environment variable of SMTP_SERVER:

$smtpconn = Net::SMTP->new($ENV{SMTP_SERVER});

The host can also be a reference to an array of SMTP servers. If a reference to an array or
list of servers is given, the program will try each in turn.

CHAPTER 6 ■ NET: : TOOLS120

For the rest of this section, I’ll use the variable $smtpconn to refer to the Net::SMTP connec-
tion object created here. You’re welcome to use any name for this object.

Setting Other SMTP Connection Parameters
Numerous other parameters are available when you’re setting up a connection with
Net::SMTP. All of the parameters can be set at the time you’re creating the connection object
or later. When you set these options at creation time, you use name => value pairs. For exam-
ple, to set the hello option to myserver.example.com upon creation of the connection object,
call it like so:

$smtpconn = Net::SMTP->new("mail.example.com", hello => 'myserver.example.com');

To set more than one parameter, separate them with a comma:

$smtpconn = Net::SMTP->new("mail.example.com", port => 2525, debug => 1);

The following examples show setting options after the connection object has been created.

Hello
Part of the protocol that is SMTP requires that you, the client, identify yourself to the server on con-
nection. This is accomplished with the HELO or EHLO command upon connection (see RFC 2821 for
more details). Setting the hello option defines the host that will be sent on the connection. If you
do not set this option, localhost.localdomain will be sent. Sending localhost.localdomain to
a remote SMTP server is usually not a good idea, since it can get the e-mail rejected by that server.
Therefore, I recommend setting this option:

$smtpconn->hello('mycomputer.example.com');

Host
The host is usually set at the creation of the SMTP connection object. You can find out the
name of the current host for a given SMTP connection object by calling the host() method
with no arguments:

$smtpconn->host();

Recall the example earlier in this section that created a SMTP connection to mail.example.com.
Now consider this example, which prints the current host:

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com');
print "The SMTP Server is" . $smtpconn->host() . "\n";

■Note The domain() method returns the hostname that the server returned on connection.

CHAPTER 6 ■ NET: : TOOLS 121

2. Some idiotic Internet providers block their clients from making connections to remote SMTP servers
on port 25. This is purportedly done to prevent spam, but really only serves to break the end-to-end
nature of the Internet. The port() option can help you get around these poorly managed Internet
providers. Obviously, the true solution for these Internet providers would be to ensure that customers
who send spam get disabled rather than breaking everyone else's Internet service!

LocalAddr, LocalPort, and Port
The localaddr() option is used to initiate the connection from the local computer to the
server on a particular IP address; in other words, to bind the local connection to a specific
local IP address. This option specifies the local IP address from which the connection will be
initiated.

Like the localaddr() option, the localport() option specifies the local port from which
the connection will be initiated.

The port option is used to set the remote port for the SMTP server. By default, this port is
25 and doesn’t need to be specified. However, some servers listen on other ports for various
reasons. In such cases, you would use the port option.2

Timeout
The timeout value is the amount of time to wait for a response from the SMTP server. The
default is 120 seconds. Like other parameters, timeout can be set at the time you create the
connection object or set later by calling directly to the attribute. This example sets the value
to 30 seconds:

$smtpconn->timeout(30);

Debug
Like the debug option with Net::POP3, the debug option for Net::SMTP is very helpful. When
you set debug to 1, additional output is printed to STDOUT, including the actual SMTP con-
versation between the program and the server. Like other options, debug can be set at the
time of object creation or can be set later within the program:

$smtpconn->debug(1);

The output from debug looks similar to this (your output will vary):

Net::SMTP>>> Net::SMTP(2.29)
Net::SMTP>>> Net::Cmd(2.26)
Net::SMTP>>> Exporter(5.58)
Net::SMTP>>> IO::Socket::INET(1.27)
Net::SMTP>>> IO::Socket(1.28)
Net::SMTP>>> IO::Handle(1.24)
Net::SMTP=GLOB(0x82e1f58)<<< 220 dfw0.icgmedia.com ESMTP Postfix (Debian/GNU)
Net::SMTP=GLOB(0x82e1f58)>>> EHLO netserver.braingia.org
Net::SMTP=GLOB(0x82e1f58)<<< 250-dfw0.icgmedia.com
Net::SMTP=GLOB(0x82e1f58)<<< 250-PIPELINING

CHAPTER 6 ■ NET: : TOOLS122

Net::SMTP=GLOB(0x82e1f58)<<< 250-SIZE 15000000
Net::SMTP=GLOB(0x82e1f58)<<< 250-ETRN
Net::SMTP=GLOB(0x82e1f58)<<< 250-XVERP
Net::SMTP=GLOB(0x82e1f58)<<< 250 8BITMIME

In this example, you can see the calls to various other Perl modules, including Net::Cmd and
IO::Socket. The actual POP3 conversation follows and shows that I don’t have any mail waiting.

Sending a Message
Once you’ve established the connection, the next step is to send the e-mail. Recall that the
example set the host and hello options upon creation of the connection object:

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');

The SMTP protocol requires that certain commands be issued, and Net::SMTP contains
methods to issue those commands. The first command, EHLO or HELO, is sent at connection
automatically (see the discussion of the hello option of the new() constructor). Next comes
the MAIL FROM command, followed by RCPT TO, and finally the DATA command. Here’s a telnet
session of a SMTP conversation (with the lines I typed in shown in bold):

telnet localhost 25
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 dfw0.icgmedia.com ESMTP Postfix (Debian/GNU)
EHLO mycomputer.example.com
250-dfw0.icgmedia.com
250-PIPELINING
250-SIZE 15000000
250-ETRN
250-XVERP
250 8BITMIME
MAIL FROM: <perlbook@braingia.org>
250 Ok
RCPT TO: <suehring@braingia.net>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
Hello,

How would you like an e-mail sample?

.
250 Ok: queued as 7B797170DD
QUIT
221 Bye
Connection closed by foreign host.

CHAPTER 6 ■ NET: : TOOLS 123

The methods in Net::SMTP essentially mirror the functions from this telnet session excerpt.
For example, the mail() method sends the MAIL FROM command, the to() method sends the
RCPT TO command, the data() method sends the DATA command, and so on. Actually, the data()
method has siblings that are used to send the body of the message and also to signal the end of
the DATA command. You use the datasend() method to send the text of the message. Notice that
a single dot (.) is used to signal the end of the DATA command in the telnet session example. The
Net::SMTP dataend() method signals that same end. Here’s an example that sends the same
e-mail as the one shown in the telnet session example:

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');
$smtpconn->mail('perlbook@braingia.org');
$smtpconn->to('suehring@braingia.net');

$smtpconn->data();
$smtpconn->datasend("Hello,\nHow would you like an e-mail sample?\n");
$smtpconn->dataend();

$smtpconn->quit;

The quit() method closes the connection. Although the connection would be closed at
program exit, it’s always a good idea to explicitly close the connection, if for no other reason
than to save a small bit of resources.

■Note The reset() method effectively cancels the e-mail message, as long as the DATA command has
not yet been sent.

Subject and Other Header Fields
The SMTP commands to send e-mail, including the MAIL FROM and RCPT TO commands, don’t
provide the same friendly From and To fields that most e-mail users are accustomed to. For
this reason, it’s a good idea to set these and others, such as Subject. You do this from within
the DATA command, as shown in Listing 6-9.

Listing 6-9. An SMTP Example

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');
$smtpconn->mail('perlbook@braingia.org');
$smtpconn->to('suehring@braingia.net');

$smtpconn->data();
$smtpconn->datasend("To: <suehring\@braingia.net>\n");
$smtpconn->datasend("From: Steve Suehring <perlbook\@braingia.org>\n");

CHAPTER 6 ■ NET: : TOOLS124

$smtpconn->datasend("Subject: Test E-mail\n\n");
$smtpconn->datasend("Hello,\nHow would you like an e-mail sample?\n");
$smtpconn->dataend();

$smtpconn->quit;

Notice in the example that each line is terminated with a newline (\n) and that the final
header line, Subject, actually contains an extra newline. This separates it from the body of the
message.

Multiple Recipients
The easiest way to send e-mail to multiple recipients is through the recipient() method. The
recipient() method accepts a list of e-mail addresses, which will then each receive a copy of
the e-mail. For example, if you had recipient variables defined as $recipient1 and $recipient2,
your call to the recipient() method would look like the code in Listing 6-10.

Listing 6-10. Sending to Multiple Recipients with Net::SMTP

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');
$smtpconn->mail('perlbook@braingia.org');
$smtpconn->recipient($recipient1, $recipient2);

$smtpconn->data();
$smtpconn->datasend("To: <suehring\@braingia.net>\n");
$smtpconn->datasend("From: Steve Suehring <perlbook\@braingia.org>\n");
$smtpconn->datasend("Subject: Test E-mail\n\n");
$smtpconn->datasend("Hello,\nHow would you like an e-mail sample?\n");
$smtpconn->dataend();

$smtpconn->quit;

The recipient() method is basically the same as sending carbon copies and blind carbon
copies, which you can also do with the cc() and bcc() methods, respectively. The methods
expect an e-mail address as their argument. The example in Listing 6-11 sends a carbon copy
to the e-mail address theboss@braingia.org.

Listing 6-11. Using the CC method with Net::SMTP

use Net::SMTP;
$smtpconn = Net::SMTP->new('mail.example.com', hello => 'mycomputer.example.com');
$smtpconn->mail('perlbook@braingia.org');
$smtpconn->to('suehring@braingia.net');
$smtpconn->cc('theboss@braingia.org');

$smtpconn->data();
$smtpconn->datasend("To: <suehring\@braingia.net>\n");
$smtpconn->datasend("From: Steve Suehring <perlbook\@braingia.org>\n");

CHAPTER 6 ■ NET: : TOOLS 125

$smtpconn->datasend("Subject: Test E-mail\n\n");
$smtpconn->datasend("Hello,\nHow would you like an e-mail sample?\n");
$smtpconn->dataend();

$smtpconn->quit;

■Note Net::SMTP is a more complex module than Net::POP3. Many additional methods are defined within the
module. For example, etrn() initiates an Extended Turn (ETRN) transfer. For more information about the methods,
see the Net::SMTP documentation at http://search.cpan.org/~gbarr/libnet-1.19/Net/SMTP.pm or
perldoc Net::SMTP. Additionally, see the Mail::Mailer module for another way to send e-mail using Perl.

Checking DNS with Net::DNS
The Net::DNS module provides a group of Perl interfaces into advanced DNS methods
used to both resolve and update DNS. Net::DNS gives the Perl programmer a much more
advanced interface into DNS than other functions in Perl. Of course, this doesn’t mean
that you’re limited to using Net::DNS for these functions. You could write your own inter-
face into DNS, customized to your needs. However, Net::DNS does a lot of the heavy lifting
and does it well. This section examines just some of the functions and tasks that you can
accomplish with Net::DNS and its interfaces.

■Tip You can do simple DNS resolution in Perl through the gethostbyname(), gethostbyaddr(), and related
functions. Use perldoc perlfunc for more information about these functions. You can go directly to the docu-
mentation for these functions using perldoc -f gethostbyname and perldoc -f gethostbyaddr.

The Net::DNS module is included with many Linux distributions or can be installed through
the distribution’s package-management system. You can also install Net::DNS from your favorite
CPAN mirror.

■Note This section assumes some level of familiarity with DNS, along with its types of queries, responses,
and records. For more information about DNS, I recommend DNS and BIND, Fourth Edition, by Paul Albitz and
Cricket Liu (O’Reilly, 2001). The first few chapters of that book are essential for anyone new to DNS.

Performing a Simple DNS Lookup
Anyone who has ever tried to program anything working with DNS knows that there’s
nothing simple about a DNS lookup. DNS lookups with Net::DNS are provided through the
Net::DNS::Resolver class. As with other object-oriented modules in Perl, you begin work-
ing with the Net::DNS module by calling the new() method.

CHAPTER 6 ■ NET: : TOOLS126

use Net::DNS;
$resolver = Net::DNS::Resolver->new();

Net::DNS::Resolver uses various methods for performing lookups. A common method is
query(), which sends a query:

$queryobject = $resolver->query('www.braingia.org');

The query() method does not use the search list, which is a list of domains that are
appended to a given hostname. In Linux, the search list is located in /etc/resolv.conf. The
search() method performs a query and includes the search list:

$queryobject = $resolver->search('www.braingia.org');

The object returned from the resolver’s call to search or query is a hash containing
a number of elements based on the DNS packet itself. These are based on the objects found in
Net::DNS::Packet and include header, question, answer, authority, and additional sections.
Of primary concern for a DNS query is the answer section (although other portions such as
the authority section may be of interest from time to time). When working with the answer
section of a query object, it’s important to check the type of record received. For example,
assuming that an A record will be returned can cause your application to break and will, if
another type is returned, cause a warning from the Net::DNS module.

Listing 6-12 (Dnsexample1.pl) shows an example that queries for the IP address or
addresses of a host. If the return is either an A record or a CNAME record, the output will be
sent to STDOUT.

Listing 6-12. Printing an A Record

#!/usr/bin/perl -w

use Net::DNS;
use strict;

my $resolver = Net::DNS::Resolver->new();
die "Lookup failed: ", $resolver->errorstring unless \

my $queryobject = $resolver->query('ord.braingia.org');

foreach my $record ($queryobject->answer) {
if ($record->type eq "A") {

print $record->address, "\n";
}
elsif ($record->type eq "CNAME") {

print $record->cname, "\n";
}

}

The example first creates a new resolver object, as you’ve already seen. Next, the query()
method is called within a die() function. If the query fails for any reason—including that the
DNS entry isn’t found—the die() function will be invoked, and the error will displayed through

CHAPTER 6 ■ NET: : TOOLS 127

a call to the errorstring() method. If execution continues, a foreach loop is invoked to iterate
through the answer or answers from the resolver’s query. Within the foreach loop, the record
type is evaluated and the result printed for either an A record or a CNAME record.

When I run this program, the simple output looks like the record for a machine within my
local network:

192.168.1.2

Searching for MX Records
You can use the mx() method is used to find the mail exchanger (MX) records and their corre-
sponding preferences. The mx() method accepts a resolver and domain as arguments. You can
also call it with just the domain for the MX lookup, but then you can’t evaluate error conditions,
so I recommend creating your own resolver object, as shown in Listing 6-13 (Dnsexample2.pl).

Listing 6-13. Printing MX Records

#!/usr/bin/perl -w

use Net::DNS;
use strict;

my $resolver = Net::DNS::Resolver->new();
die "Lookup failed: ", $resolver->errorstring unless my @mxrecords =

mx($resolver, 'braingia.org');

foreach my $record (@mxrecords) {
print "Exchanger is: ", $record->exchange, " with preference ",

$record->preference, "\n";
}

This example first creates a resolver object, $resolver, and then makes a call to the mx()
method with the resolver and the domain, braingia.org, as arguments. Notice again that this
call to mx() falls within the context of die() to check for errors. Finally, the @mxrecords array is
iterated through and the exchangers are printed to STDOUT. When run against my domain,
braingia.org, the output is as follows:

Exchanger is: mail.braingia.org with preference 0

Looking for the Authoritative DNS Servers
Another common task when working with DNS from within a program is to find the authorita-
tive DNS servers for a given host. This is accomplished through the resolver object. Recall that
one of the types of information returned from a resolver call is the authority information. You
can parse this data to determine the authoritative DNS servers for the domain, as shown in
Listing 6-14 (Dnsexample3.pl).

CHAPTER 6 ■ NET: : TOOLS128

Listing 6-14. Printing the Authority Records

#!/usr/bin/perl -w

use Net::DNS;
use strict;

my $host = "www.braingia.org";

my $resolver = Net::DNS::Resolver->new();
die "Lookup failed: ", $resolver->errorstring unless

my $queryobject = $resolver->query($host);

my @authority = $queryobject->authority;
foreach my $serverhash (@authority) {

foreach $key (keys %{$serverhash}) {
print "Authoritative Server for $host:

$serverhash->{$key}\n" if ($key eq "nsdname");
}

}

This example is largely the same as Listing 6-12, up to the point of the query. There, it
calls the $queryobject->authority() method, which returns a hash of the information
returned from the server for the authoritative DNS servers, including the type of record,
the time to live (TTL), and other information. This hash, called $serverhash in the exam-
ple, is then iterated through with a foreach loop, where it searches for the key nsdname.
When that key is found, the output is printed to STDOUT. When run against my domain,
the output is as follows:

Authoritative Server for www.braingia.org: ns0.braingia.org
Authoritative Server for www.braingia.org: ns1.braingia.org

Sending a Ping with Net::Ping
The ping command is familiar ground for many. The ping command uses ICMP to send an
echo request to another networked device, which then responds (if it can) with an echo reply.
A Net::Ping module exists for working with ICMP packets from a Perl program. Net::Ping
works with numerous protocols aside from ICMP, including the Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). In fact, the default protocol for Net::Ping is TCP.

CHAPTER 6 ■ NET: : TOOLS 129

LIMITATIONS OF ICMP, NET::PING, AND HOST CHECKING

ICMP, the protocol used by the ping command, is disabled on some hosts or at the firewalls of some net-
works. This means that ICMP is not an entirely reliable predictor of host reachability. For example, sending
a ping to a web site might fail, but the site itself is operational when viewed through a web browser.

Net::Ping uses TCP as the default protocol and requires that the program be run as root or setuid to
root in order to use the ICMP protocol. This is a security risk, simply because the program must run as root or
use setuid. The ping command itself is commonly setuid root, but security recommendations and security
programs such as Bastille remove the setuid bit from ping to prevent an avenue for privilege escalation.

When performing service checks through an ICMP packet, or even by sending a TCP packet to an open
port, the amount of information that can be gained is limited. For example, you could send a plain ping to
a computer, which responds successfully, but that’s no indicator of whether the computer is listening on its
web port. Furthermore, you could send a TCP packet to port 80 (the typical HTTP port) and receive a success-
ful TCP three-way handshake. However, that is no indication that the web server is actually serving content.
For that, you need a more complex type of check, such as that performed by Nagios and similar software.

Net::Ping is less common than other Net:: modules on Linux systems. Therefore, there’s
a good chance that you might need to install the software from your local CPAN mirror. It’s also
important to note that the TCP and UDP checks used by Net::Ping are sent to the echo service
port on the remote host. It’s very uncommon for the echo port to actually be listening on remote
hosts. Therefore, Net::Ping enables you to set the port on the remote server for the check.

■Caution Unlike other Net:: modules, Net::Ping is called with the Ping in mixed case. Other Net::
modules use all uppercase, as in Net::SMTP, Net::LDAP, Net::POP3, and so on. This case-sensitivity is
important when importing the module into the namespace, since the Perl compiler wouldn’t be able to find
the module if you specify use Net::PING instead of use Net::Ping.

Creating a Ping Object
As you would expect by now, you work with Net::Ping first through its new() method. The new()
method accepts a number of arguments, including the protocol, timeout, bytes to be sent, source
device, and type of service. In practice, you’ll use the protocol and timeout options the most often.
The option order is as follows for the new() method:

Net::Ping->new(protocol, timeout, bytes, source_device, type_of_service);

CHAPTER 6 ■ NET: : TOOLS130

For example, if you want to change the protocol from its default TCP, do so when creating
the ping object. This example sets the protocol to ICMP:

$pingobj = Net::Ping->new('icmp');

Separate multiple arguments with commas when invoking new. For example, to set timeout
to 10 seconds, explicitly set the protocol first, and then set the timeout:

$pingobj = Net::Ping->new('icmp', 10);

Sending an ICMP Echo Request
Using Net::Ping to send an ICMP echo request requires root privileges or that the Perl program
be setuid root. I won’t promote the use of setuid. Therefore, if you want to run an ICMP-based
check with Net::Ping, the program will need to be run as root. I dislike this option as well, but
I’m choosing the lesser of two evils.

Listing 6-15 (Pingex1.pl) sends a simple ICMP echo request to a host on the Internet and
from there, reports on the response.

Listing 6-15. A Simple Ping

#!/usr/bin/perl -w

use Net::Ping;
use strict;

my $pingobj = Net::Ping->new('icmp');

my $host = "www.google.com";

my ($status,$time,$ip) = $pingobj->ping($host);
if ($status) {

print "Host $host ($ip) responded in $time seconds\n";
} else {

print "Host $host ($ip) unreachable\n";
}

■Note Don’t forget that you need root privilege to run the program in Listing 6-15. If you see an error simi-
lar to icmp ping requires root privilege, that means you don’t have root privilege!

This example first invokes the new() method, creating the ping object, called $pingobj. The
call to new() also changes the protocol to ICMP. Next, the host is set, which is www.google.com in
this example. The ping() method is called against the $pingobj with the argument of the host to
be pinged.

CHAPTER 6 ■ NET: : TOOLS 131

When called in scalar context, the ping() method returns 1 for success or undef for a failure
(an unsuccessful ping). When called in a list context, the ping() method returns the success flag
(1 for success), the time that the operation took, and the IP address used.

When run, the program produces output like this:

Host www.google.com (64.233.167.104) responded in 0 seconds

The time returned by ping() is sent in integer format by default. This means that, many
times, the time will be integer 0, since the ping operation took less than a second. To obtain
more accurate times, use the Time::HiRes module, as described in the next section.

The final section of the example evaluates the $status variable. If the $status variable is
1, the ping was successful and the results are printed. If the $status variable is 0, the ping was
unsuccessful and the corresponding result is also printed.

Getting More Accurate Times
As previously stated, the time returned by ping() is returned in integer seconds. This is fine if all
you’re looking for is success or failure of the ping operation as a whole. However, if you want to
obtain more accurate times, you need to use the Time::HiRes module, available from CPAN. The
code in Listing 6-16 (Pingex2.pl) is essentially the same as Listing 6-15, with two exceptions: the
Time::HiRes module is brought into the namespace, and it includes a call to the hires() method
on the ping object.

Listing 6-16. A Ping Using Time::HiRes for More Accurate Times

#!/usr/bin/perl -w

use Net::Ping;
use Time::HiRes;
use strict;

my $pingobj = Net::Ping->new('icmp');

my $host = "www.google.com";

$pingobj->hires();
my ($status,$time,$ip) = $pingobj->ping($host);
if ($status) {

print "Host $host ($ip) responded in $time seconds\n";
} else {

print "Host $host ($ip) unreachable\n";
}

When run, the program produces output similar to that shown here:

Host www.google.com (64.233.167.104) responded in 0.0691518783569336 seconds

CHAPTER 6 ■ NET: : TOOLS132

Sending a TCP Check
As I mentioned earlier, the default protocol used by Net::Ping is TCP. However, the default
port used by Net::Ping is the echo port. It’s quite uncommon to find an Internet host running
the echo service. Therefore, to check a host using TCP, you will probably need to change the
port on which the TCP check will be sent. The port should be one that the remote port is lis-
tening on, which might be port 80 for HTTP, port 25 for SMTP, and so on. The /etc/services
file shows common port number-to-name mappings.

The port change is invoked on the ping object:

$pingobj->{port_num} = "<port>";

For example, here’s the syntax to change the port to 80 on the ping object called $pingobj:

$pingobj->{port_num} = "80";

Listing 6-17 (Pingex3.pl) shows a more complete example, building on the example shown
in Listing 6-16. This example checks port 80 (HTTP) on Google’s web site.

Listing 6-17. Using TCP for a Different Type of Check

#!/usr/bin/perl -w

use Net::Ping;
use Time::HiRes;
use strict;

#$pingobj = Net::Ping->new('icmp');
my $pingobj = Net::Ping->new();

my $host = "www.google.com";

$pingobj->hires();
$pingobj->{port_num} = "80";
my ($status,$time,$ip) = $pingobj->ping($host);
if ($status) {

print "Host $host ($ip) responded in $time\n";
} else {

print "Host $host ($ip) unreachable\n";
}

Again, it should be noted that this check merely looks to see whether port 80 is capable
of completing the TCP three-way handshake. This check is not indicative of the host actually
serving web content or content on the actual page, and you should not rely on it for such
information. When run, the program produces output like this:

Host www.google.com (64.233.167.99) responded in 0.0651910305023193

CHAPTER 6 ■ NET: : TOOLS 133

Security Considerations with Net:: Modules
The modules introduced in this chapter don’t have any specific security issues associated with
them, other than those inherent in the protocols for which they operate and the usual security
considerations that a programmer would have when working with a program that might use
external data.

POP3 is inherently insecure. When POP3 sends the username and password, it does so
in plain, clear text. This means that anyone who happens to be listening at any point in the
network can see both your username and your password. In addition, the e-mail being sent
between the server and your POP3 client (usually your computer) is not encrypted. This is
less of a concern, since that same e-mail was already sent over the Internet unencrypted!
POP3S, or POP3 over SSL, fixes both of these problems by sending the POP3 conversation
over the Secure Sockets Layer. See the Mail::POP3Client documentation for more informa-
tion about using SSL with POP3 through Perl.

SMTP also sends mail in clear text across the Internet. These concerns aren’t specific to
the Perl Net:: modules. They apply whether you’re using Perl or a proprietary e-mail software
package.

Summary
This chapter examined the Net:: tools for interacting with various types of servers and serv-
ices on the Internet. First, it covered how to check e-mail using POP3 with Net::POP3 and
Mail::Box::POP3. Next, you learned how to send e-mail with Net::SMTP. Then you looked at
how to query DNS for information. Finally, you learned how to use Net::Ping together with
Time::HiRes to check on servers and services.

The next chapter will look at XML and RSS and their use with Perl.

XML and RSS

P A R T 3

■ ■ ■

137

C H A P T E R 7

■ ■ ■

1. Some say the acronym for SOAP is really Service-Oriented Access Protocol or even Service-Oriented
Architecture Protocol. I really don’t care which you call it. I’d rather work with it.

SOAP-Based Web Services

SOAP has become a ubiquitous protocol for exchanging information on the Internet. SOAP is
a means by which remote procedures or methods can be called as if they were local. When you
call a SOAP method, you’re asking for an application to perform some computation and return
a result to your program. This is the same concept as a local method call; it’s just that the SOAP
call happens to be remote. These method calls sent using SOAP can be transported over
a number of mechanisms, although this chapter will examine only the use of SOAP over HTTP.

SOAP provides a well-formed means to obtain information from a data source. In a SOAP
request, you provide parameters as required by the receiving application. These parameters
are then used by the server, which executes the query to the application’s data source on behalf
of the client and returns values to the client in a SOAP response. This information can then be
parsed and used within the local Perl application.

This chapter begins with a brief primer on SOAP, and then describes how to use the Perl
SOAP::Lite module to create a SOAP client and a SOAP listener.

A Quick SOAP Primer
SOAP is the acronym for Simple Object Access Protocol,1 a protocol defined by the W3 Consor-
tium (http://www.w3.org/2002/ws/). This section describes SOAP at a high level.

■Note I assume that you’re either familiar with XML or can live without knowing all of those details. If
you’d like to know more about XML, take a look at http://www.w3schools.com/xml/default.asp.

SOAP is client/server format, with one side sending the message and the other side pars-
ing the XML content of the message. The application may take action based on the results of
the message, either on the receiver or sender, or both.

SOAP is an XML format with three elements: envelope, header, and body. The SOAP
header and SOAP body are both contained within the SOAP envelope. The SOAP header is

CHAPTER 7 ■ SOAP-BASED WEB SERVICES138

actually optional, although it’s almost always included. The SOAP body contains the heart of
the SOAP message. Here’s an example of a SOAP request:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<namesp1:NDFDgenByDay
xmlns:namesp1="http://weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl">

<latitude xsi:type="xsd:float">44.52</latitude>
<longitude xsi:type="xsd:float">-89.58</longitude>
<startDate xsi:type="xsd:string">2005-04-23</startDate>
<numDays xsi:type="xsd:int">5</numDays>
<format xsi:type="xsd:string">12 hourly</format>

</namesp1:NDFDgenByDay>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This example sends a request to the United States National Weather Service for forecast
data that the site has available through SOAP. The entire message is encapsulated within the
<SOAP-ENV:Envelope> section, which contains the SOAP body inside the <SOAP-ENV:Body> sec-
tion. Naturally, since I already stated that the SOAP header is almost always included, I found
an example that doesn’t contain the SOAP header.

When connecting to a web service, you need to know the address of the service, including
transport information. Since SOAP can be transported over so many different types of proto-
cols (HTTP, e-mail, or some other protocol), the address information not only shows where
the web service resides, but also how to communicate with it. In addition to the address infor-
mation, the namespace of the web service must also be included. The namespace is used to
further locate the web service on the server itself. Finally, the method or function to be called
on the remote server, along with any parameters, are included in the SOAP call. In the sample
SOAP request, I provide parameters as required by the receiving application.

The parameters required by a given SOAP service are usually defined in the service defini-
tion document known as the Web Service Definition Language (WSDL). The WSDL describes the
interfaces for a given web service. Using the WSDL, the programmer can determine the names of
the services offered, along with the required parameters and their data types. As you’ll see in the
next section, Perl’s SOAP::Lite module can also use the WSDL to handle some of the heavy lifting
for the programmer.

SOAP has become popular because it is built to use well-known protocols such as HTTP
and XML. Several popular web sites have SOAP interfaces available. Table 7-1 lists a select few
of these services, along with a short description of each.

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 139

Table 7-1. Some Web Sites with SOAP Interfaces

Site/Service Description Information URL

Amazon.com Numerous web services to expose http://www.amazon.com/gp/aws/
data on products at Amazon.com landing.html

National Web services to expose forecasts and http://weather.gov/xml/
Weather conditions based on latitude and
Service longitude; available for U.S. locations

Google Interfaces to query Google’s directory http://www.google.com/apis/
and more

SOAP Meets Perl: SOAP::Lite
One package in Perl, SOAP::Lite, stands apart from other modules capable of talking SOAP.
SOAP::Lite enables a developer to create both a SOAP client to send SOAP requests and a SOAP
listener to receive SOAP requests. SOAP::Lite is a collection of a number of other SOAP- and
XML-related packages in Perl, so importing SOAP::Lite into a program’s namespace effectively
makes numerous functions available to your program.

The SOAP::Lite package is available with many Linux distributions and also at your
favorite CPAN mirror. Some of the classes available with SOAP::Lite include the following:

• SOAP::Data

• SOAP::Deserializer

• SOAP::Header

• SOAP::Lite

• SOAP::Parser

• SOAP::Serializer

• SOAP::Server

• SOAP::Transport

Importing and Debugging SOAP:Lite
First things first—you need to know how to import and, more important, how to debug the
package. As with other packages, you first import SOAP::Lite into your program’s namespace
with the use pragma:

use SOAP::Lite;

When importing into the namespace, you can specify some debugging, or tracing as it’s
known to SOAP::Lite. This tracing can be helpful—no, more appropriately, this tracing can
be a huge time- and headache-saver—when working with web services. Like other debug-
ging, such as that for Net::SMTP, SOAP::Lite tracing can show method calls and other useful
bits that can assist in troubleshooting a call to a web service. Multiple levels of tracing are
available with SOAP::Lite. Some levels are applicable to the client only, the server only, or
both. Table 7-2 lists some the events that are traceable with SOAP::Lite.

CHAPTER 7 ■ SOAP-BASED WEB SERVICES140

2. I’ve always found that, if I’m having trouble with a program and need to debug, I’d rather have too
much information, at least at first.

Table 7-2. SOAP:Lite Traceable Events

Event Applies To Description

transport Client Provides details of the request and response

result Server Shows the result of the method call

parameters Server Shows the parameters received for the method call

headers Server Shows the headers of the message as it was received

debug Both Shows details about the transport

objects Both Shows calls to new() and destroy()

trace Both Shows entry into various functions

In practice, you’ll find that it’s most helpful to enable all the debugging.2 To enable trace
debugging for all types of events, use this code:

use SOAP::Lite +trace;

SOAP::Lite also gives the developer the opportunity to enable all debugging, but then
selectively disable certain types of events. For example, this code enables all debugging but
then turns off the trace for objects:

use SOAP::Lite +trace => [all -objects];

SOAP::Lite also has an on_debug() method, which takes a reference to a subroutine as an
argument. This means that you can perform more complex debugging by defining your own
subroutine for the debugging to, for instance, send the output to a log file or elsewhere. Here’s
an example:

on_debug(sub {print STDOUT @_})

Setting Up the SOAP Object
The SOAP::Lite package contains a number of important methods for working with SOAP as
a client. Some of these are used frequently when working with SOAP. Of course, since it’s Perl,
there are many ways to accomplish the same tasks, even within the same package! I’ll high-
light a few methods here, before jumping into some examples.

new(): Unlike many other packages, the new() method is not required with SOAP::Lite.
I’m highlighting it here simply because of that fact.

proxy(): The proxy() method is used to set the location of the web service to call. This
includes transport information such as http:. Recall that SOAP::Lite is a congregation of
a number of other modules. Behind the scenes, the proxy() method calls SOAP::Transport,
and the appropriate transport information will also be included. In other words, when you
call the proxy() method with an http: transport, the SOAP::Transport::HTTP::Client

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 141

module will actually be called for you. The proxy() method also accepts parameters,
depending on the given transport. For example, the http: method might include a timeout
parameter, and you could call it like so:

proxy("http://www.example.com", timeout => 30);

■Note For more information about the parameters available with a given transport, use perldoc for that
transport. For example, to check the parameters for SOAP::Transport::HTTP, you would run perldoc
SOAP::Transport::HTTP.

uri(): The uri() method sets the namespace for the web service. In future versions of
SOAP::Lite, the uri() method will be phased out in favor of a method called ns(). For
now, the uri() method works, but watch for new versions of SOAP::Lite to deprecate this
method. The difference between the uri() (ns() in future versions) and proxy() is that
proxy() defines the address of server or the global location of this web service, whereas
uri() defines the location of the method locally to the server. The proxy tells your pro-
gram where to find the SOAP server, and the URI tells the SOAP server where to find the
method that you would like to call.

service(): The service() method is used to give the location of the WSDL document. You
can invoke a web service in SOAP::Lite with a combination of the proxy() and uri() (or the
new ns()) methods, or you can invoke the web service by calling the WSDL through
the service() method. In either case, you also call the web service method from within the
Perl code, supplying any arguments to the method call.

Listing 7-1 (Example1.pl) shows an example of a SOAP object setup using the proxy() and
uri() methods.

Listing 7-1. Setting Up a SOAP Object

#!/usr/bin/perl -w

use SOAP::Lite;
use strict;

my $soap = SOAP::Lite
-> proxy('http://weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php')
-> uri('http://weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDay');

This next example sets up the same object, but goes through the WSDL to do so:

$soap = SOAP::Lite
-> service('http://weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl');

Note that neither of these code snippets produces any output.

CHAPTER 7 ■ SOAP-BASED WEB SERVICES142

■Note The methods that I use frequently might be used sparingly by other developers. I encourage you to
read the documentation on SOAP::Lite. Use perldoc SOAP::Lite once you install SOAP::Lite or exam-
ine the documentation at http://www.soaplite.com.

How you set up your SOAP object depends on your own preferences. I’ve seen programs
use the WSDL exclusively with the service() method, and I’ve seen programs use the proxy()
and uri() methods to set up the SOAP object. I would venture that the proxy() and uri() meth-
ods are more common. In addition, the service() method is slower, since the program must
first retrieve the WSDL using an HTTP GET, parse the WSDL, and then create a SOAP request to
the appropriate namespace using an HTTP POST. I prefer the proxy() and uri() methods.

Calling SOAP Methods
Recall that SOAP is a means to include functions executed on remote machines in your pro-
gram as if they were local. When you call a SOAP method, you’re asking a remote application
to use its method by that name and return something to you. In the previous section, you saw
how to set up a SOAP object by configuring the location for the service, as well as the name-
space for the service. In this section, you’ll see how to call a SOAP method.

Throughout this chapter, you’ll see a call to a fictitious SOAP implementation called
BookInfo.cgi. I’ve created a sample application to provide the back end for this application.
If you would like to test any of the examples, you can implement this code (BookInfo.cgi),
as shown in Listing 7-2.

Listing 7-2. The Book Info SOAP Implementation

#!/usr/bin/perl -w

use strict;
use SOAP::Transport::HTTP;

SOAP::Transport::HTTP::CGI
-> dispatch_to('isbnsearch')
-> handle;

package isbnsearch;

sub isbnsearch {
my $class = shift;
my $isbn = shift;
if ($isbn eq "1590595319") {

return "Beginning Perl Web Development\n";
} elsif ($isbn eq "0672327716") {

return "Linux Firewalls - Third Edition\n";
} elsif ($isbn eq "0764549324") {

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 143

3. An ISBN is a number used to identify a book. See http://www.isbn-international.org/en/whatis.html
if you’re curious.

return "MySQL Bible\n";
} else {

return "Steve hasn't worked on that book yet\n";
}

}

Calling a SOAP method is actually rather easy. Once you get comfortable with the termi-
nology of SOAP::Lite—such as proxy, URI, and such—the method call is essentially the same
as you would find with any function or method call in Perl. You call the SOAP method and
include any parameters required by the method. Consider this example:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/isbnsearch')
-> isbnsearch("1590595319");

In this example, the proxy() and uri() methods are called, and the SOAP::Lite object is
created, as you’ve seen before. Added to this example is the call to the function or method on
the remote side, isbnsearch(). A single argument is sent with this method call: an ISBN.3 The
program produces no output.

Result
The call to the SOAP web service is all well and good, but it would be nice to actually see the
response, too. The result() method is used to see the response. Adding that, along with a print
statement, to the code example yields this:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/isbnsearch')
-> isbnsearch("1590595319");

print $soap-> result;

The simple output, based on the sample BookInfo.cgi program, looks like this:

Beginning Perl Web Development

Of course, there’s no reason why you couldn’t write this with one command or line of
code. Listing 7-3 (Printbookinfo.pl) shows a more complete example.

Listing 7-3. Printing the Results of an ISBN Search

#!/usr/bin/perl -w

use strict;
use SOAP::Lite;

CHAPTER 7 ■ SOAP-BASED WEB SERVICES144

my $soap;

print $soap = SOAP::Lite
-> proxy('http://www.braingia.org/cgi-bin/BookInfo.cgi')
-> uri('http://www.braingia.org/isbnsearch')
-> isbnsearch("1590595319")
-> result;

Notice the separate call to print is missing in Listing 7-3. This example is a quick way to
print a result to STDOUT, but it doesn’t allow for easy (and readable) error handling. I’ll cover
SOAP error handling in the next section.

Obviously, you’ll likely want to do more with those results than merely print them to
STDOUT. The results arrive in XML and can therefore be parsed with Perl’s rich set of XML
parser packages, including XML::Simple and XML::Parser, just to name a couple.

Autodispatch
Autodispatch refers to a mechanism whereby any method calls not located in the current
namespace are automatically sent through a SOAP call. This means that you can call the
method as you would any other function within a Perl program. Consider the code example
just shown. Using autodispatch, that same code would look like this:

use SOAP::Lite +autodispatch =>
proxy => 'http://www.example.com/BookInfo.cgi',
uri => 'http://www.example.com/isbnsearch';

isbnsearch("1590595319");

print SOAP::Lite->self->call->result;

Since no $soap SOAP object was created, you must call the SOAP::Lite self object in order
to view the result. The call() method of the self object contains the SOAP envelope; therefore,
calling result() on the SOAP envelope object prints the result.

Handling SOAP Errors
I had originally written about SOAP errors being slippery in the opening paragraph for this sec-
tion, but then thought better of it. As you would expect, errors do indeed occur with SOAP
method calls. The errors could be at any level and completely unrelated to SOAP, like a server
being down or my cable Internet service being temporarily unavailable again. When the errors
occur at the SOAP level—say, in a method call—you can access the error within the SOAP object
itself through the fault() method. By examining the fault() method, which will return undef
unless there is a problem, you can determine whether the SOAP method call was successful.

Consider this code:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/isbnsearch')
-> isbnsearch("1590595319");

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 145

if ($soap->fault) {
print "Error found: ", $soap->faultcode,
": ", $soap->faultstring, " Detail: ",
$soap->faultdetail;

} else {
print $soap->result;

}

The output from this example will depend on whether you get an error and, if so, what
that error is. Here’s an example of the output:

Error found: SOAP-ENV:Client: Failed to access class (BookInfo.cgi) at
/usr/share/perl5/SOAP/Lite.pm line 2100.

Setting Types and Names
Perl, as a language, doesn’t really care what type of value you store within a variable, a string
“5150” and an integer 5150 aren’t functionally different to Perl (although they are in the back-
ground). This isn’t the case with most SOAP calls.

Luckily, SOAP::Lite attempts to automatically set the type based on the data value, and it
does quite well at that. SOAP::Lite can guess that a value of 5150 is an integer and a value of
“Distance” is a string type. However, sometimes SOAP::Lite doesn’t guess correctly. In such
cases, you can specify the type of data by working with the SOAP::Data class. For example, to
explicitly set the data type of an element to a string, and then set the value to 5150, the code
looks like this:

SOAP::Data->type(string => 5150);

Using the BookInfo.cgi example, assume that the isbnsearch() method required a data type
of a string. However, since an ISBN is all digits, SOAP::Lite naturally would guess that the data
type is an integer. To correct that, you would set the type when making the call, as shown here:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/isbnsearch')
-> isbnsearch(SOAP::Data->type(string => "1590595319"));

Unlike other method and function calls, some SOAP methods don’t care as much about
the ordering of arguments as they care about the name of those arguments. This means that
it’s important to ensure that the names of the arguments are set according to the names that
the SOAP method is expecting. Not all SOAP methods are like this, and I usually recommend
to first get the order correct before setting the names.

You set the names of the parameters in much the same way as you set parameter types:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/isbnsearch')
-> isbnsearch(SOAP::Data->name("isbn" => "1590595319"));

CHAPTER 7 ■ SOAP-BASED WEB SERVICES146

And setting types and names is done like so:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/BookInfo.cgi#isbnsearch')
-> isbnsearch(SOAP::Data->name("isbn" => "1590595319")->type(string));

Or, you could reverse that and set the type first:

$soap = SOAP::Lite
-> proxy('http://www.example.com/BookInfo.cgi')
-> uri('http://www.example.com/BookInfo.cgi#isbnsearch')
-> isbnsearch(SOAP::Data->type(string => "1590595319")->name("isbn"));

Creating a SOAP Listener
Up to this point in the chapter, you’ve been reading almost exclusively about SOAP from the client
side, which is only half of the equation. SOAP::Lite also has methods for running its own SOAP
server to respond to requests as well. These methods are accessed through SOAP::Transport::HTTP
class, although other transports are available. This section examines how to create a SOAP listener.

When creating a listener, three methods are of primary concern: new(), dispatch_to(),
and handle(). The new() method sets the address and port for the server. These are the local
address and port that the server will be listening on. If the port you choose is below 1024,
you’ll need to have root privileges in order to run the program. I strongly recommend against
this, since there’s no reason to run a service such as this as root and risk a security problem
resulting in an attacker getting root privileges. In either case, you’ll need to ensure that the
server isn’t listening on the port in question. You can check this by using the netstat shell
command. For example, say you want to have the SOAP listener use port 18001. The follow-
ing command checks to see if the server is already listening on port 18001:

netstat -an | grep 18001

If the command doesn’t return any output, that means the port is available. On the other
hand, if the command returns output such as the following, then the server is indeed listening:

tcp 0 0 0.0.0.0:18001 0.0.0.0:* LISTEN

For testing purposes in this chapter, I’m going to set the listener to use only the localhost,
so that the program won’t actually be available on the network. This code sets the server to lis-
ten on the localhost and on port 18001:

$server = SOAP::Transport::HTTP::Daemon
->new(LocalAddr => 'localhost', LocalPort => '18001');

The dispatch_to() method specifies the method name that will actually do the process-
ing on the server side. This can be a path, a module, a module::method combination, or just
a method. The code to set the method, which in this example will be called doubleit, in com-
bination with the call to the new() method, looks like this:

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 147

$server = SOAP::Transport::HTTP::Daemon
->new(LocalAddr => 'localhost', LocalPort => '18001')
->dispatch_to('doubleit');

Finally, the handle() method sets the server up to continue listening. Combining this with
the previous method calls nearly completes the setup of the server:

$server = SOAP::Transport::HTTP::Daemon
->new(LocalAddr => 'localhost', LocalPort => '18001')
->dispatch_to('doubleit');
->handle();

Finally, you need to set up the method, doubleit. In this case, I implement the doubleit
method through a module of its own. This is much more common than the alternative,
which is to include the method within the server code itself. The code to implement that
method is shown in Listing 7-4 (Doubleit.pm). It’s simple code that takes a number as input
and doubles it.

Listing 7-4. Code to Implement the Server Package for the SOAP Call

package doubleit;

sub doubler {
my $class = shift;
my $num = shift;
return ($num*2);

}

return 1;

This file, which I saved as Doubleit.pm in my home directory, needs to be included within
the server code so that program can include the methods available in doubleit within its name-
space. The client will call the actual method (called doubler()). Listing 7-5 shows the full server
code (Doublerserver.pl).

Listing 7-5. Code to Implement the Server (Listener) for the SOAP Call

#!/usr/bin/perl -w

use strict;
use SOAP::Transport::HTTP;
require ("doubleit.pm");

my $daemon = SOAP::Transport::HTTP::Daemon
->new(LocalPort => 18001)
->dispatch_to('doubleit')
->handle();

CHAPTER 7 ■ SOAP-BASED WEB SERVICES148

In the next section, I’ll show you how to call the web service server that you just created.
For now, you can run the server by simply executing it from the command line:

./doublerserver.pl

Once run, the server will not fork into the background, so it will remain running until you
press Ctrl+C. You can verify that the server is running with the netstat command shown earlier
in this section. Now, you should indeed see that the server is listening.

Consuming a SOAP Web Service
In the previous section, you saw how to create a SOAP server that listens on a port of your
choosing and implements a simple method call to double the number it receives as input.
You’ve already seen how to implement SOAP calls as the client side of the protocol. This sec-
tion wraps it all into one package by showing how to call the SOAP service you created in the
previous section. In addition, I’ll show you a more complex example that calls the National
Weather Service SOAP service.

Calling Your SOAP Server
The SOAP server you created in the previous section has one method, doubler(), which accepts
a number as an argument and returns the double of that number. Recall that you invoke a SOAP
method by creating a SOAP object with the proxy() and uri() methods, then calling the SOAP
service including any arguments, and then doing something with the result.

Listing 7-6 (Calldouble.pl) shows a client implementation to call the SOAP service created
in the previous section.

A MORE ROBUST SERVER

The SOAP::Lite module provides an excellent choice for implementing a SOAP server. However, for high-
volume sites, a more robust solution is preferable. Using a proven web server such as Apache and building
a CGI-based SOAP handler provides a great solution that takes advantage of Apache’s proven track record.
There is also a package for implementing SOAP within a mod_perl environment. The package is called
Apache::SOAP.

The SOAP::Transport::HTTP module from CPAN includes a class that enables a normal Apache
server running mod_cgi to service SOAP requests. Many of the examples in this chapter are shown as they
would run against a CGI-based SOAP server running on Apache. The sample program BookInfo.cgi was
written (and is running) on a mod_cgi Apache server.

No special configuration is required on the Apache server side (other than that what is required to run
CGI programs). For more information, see the Perl documentation for SOAP::Transport::HTTP and
SOAP::Transport::HTTP::CGI. See the BookInfo.cgi example earlier in this chapter for a working
implementation of a SOAP server with Apache mod_cgi.

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 149

Listing 7-6. A Program to Call the Local SOAP Service

#!/usr/bin/perl -w

use SOAP::Lite;
use strict;

my $soap = SOAP::Lite
-> uri("http://localhost/doubleit")
-> proxy("http://127.0.0.1:18001/");

my $originalnum = 2;
my $result = $soap->call('doubler', $originalnum);
die $result->faultstring if $result->fault;
print "result is: " . $result->result . "\n";

The example begins by importing the SOAP::Lite package in the namespace, and then it
creates a SOAP object, called $soap. This object uses the http: transport to send to a proxy of
127.0.0.1:18001. The URI or namespace is set to http://localhost/doubleit.

The original number is set to 2 and the doubler() method is called, including the
$originalnum as an argument. Next, the SOAP fault is evaluated to see if there was a prob-
lem, and if not, the result is printed. Here’s the output:

result is: 4

If you receive an error such as the following when attempting to run this code, it likely
means that the server isn’t running:

500 Can't connect to 127.0.0.1:18001 (connect: Connection refused)
at ./caller.pl line 9

Calling the National Weather Service SOAP Service
Earlier in the chapter, I showed a SOAP response from the National Weather Service and the
proxy() and uri() methods for this service. Here they are again:

use SOAP::Lite;
use strict;

my $soap = SOAP::Lite
-> proxy('http://weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php')
-> uri('http://weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDay');

The SOAP service at the National Weather Service has two methods: NDFDgen() and
NDFDgenByDay(). These are found at http://weather.gov/forecasts/xml/SOAP_server/
ndfdXMLserver.php and also within the WSDL. Obviously, you need to call one of these
two methods.

The call to these methods is more complicated than the other calls shown in this chapter,
as there are a number of parameters that must be sent and must be formatted correctly. Luck-
ily, the SOAP services are well documented, which makes it easy to send the correct format.

CHAPTER 7 ■ SOAP-BASED WEB SERVICES150

The method that I’m using for this example is NDFDgenByDay(), which accepts five parame-
ters as arguments, for the latitude, longitude, start date, number of days, and format. Of course,
this code assumes that the values are all set in the variables for latitude, longitude, and so on.
So, here they are (using the latitude and longitude for Stevens Point, Wisconsin):

my $latitude = "44.52";
my $longitude = "-89.58";
my $startdate = "2005-04-28";
my $numdays = "5";
my $format = "12 hourly";

The service does not require that the parameters be sent as a specific type. In other words,
SOAP::Lite’s guesses, though incorrect in this case, work okay with this SOAP service. To set up
the method call for this service, use the SOAP::Data->name() method to set the name of each
parameter along with its corresponding value:

->NDFDgenByDay(SOAP::Data->name("latitude" => $latitude),
SOAP::Data->name("longitude" => $longitude),
SOAP::Data->name("startDate" => $startdate),
SOAP::Data->name("numDays" => $numdays),
SOAP::Data->name("format" => $format));

With the method call set up correctly, you merely need to print the result:

print $soap->result;

■Tip You can use the National Weather Service’s site to find the latitude and longitude for your location.
This service is available only in the United States. Also note that this service may have changed by the time
you’re reading this. Visit http://weather.gov/xml/ for the most current information. There, you’ll find
more information about the National Weather Service’s XML initiative, including SOAP information.

Listing 7-7 (Callnws.pl) shows the complete code for calling the National Weather Service
SOAP service.

Listing 7-7. Calling the National Weather Service SOAP Service

#!/usr/bin/perl -w

use SOAP::Lite;
use strict;

#Be sure to change these unless you live in Stevens Point
and want an old forecast (since it doesn't work with past dates)
my $latitude = "44.52";
my $longitude = "-89.58";
my $startdate = "2005-04-28";

CHAPTER 7 ■ SOAP-BASED WEB SERVICES 151

my $numdays = "5";
my $format = "12 hourly";

my $soap = SOAP::Lite
-> proxy('http://weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php')
-> uri('http://weather.gov/forecasts/xml/DWMLgen/wsdl/ndfdXML.wsdl#NDFDgenByDay')
->NDFDgenByDay(SOAP::Data->name("latitude" => $latitude),

SOAP::Data->name("longitude" => $longitude),
SOAP::Data->name("startDate" => $startdate),
SOAP::Data->name("numDays" => $numdays),
SOAP::Data->name("format" => $format));

print $soap->result;

You will want to change the date to a date nearer to the date that you’re reading this. The
SOAP call won’t work for dates in the past!

The result, as printed by the program, is shown in part here. (Note that I’ve broken some
of the long lines in order to print them in the book.)

<?xml version='1.0' ?>
<dwml version='1.0' xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.nws.noaa.gov/forecasts/xml/DWMLgen/schema/DWML.xsd">
<head>

<product concise-name="dwmlByDay" operational-mode="developmental">
<title>NOAAs National Weather Service Forecast by 12 Hour period</title>
<field>meteorological</field>
<category>forecast</category>
<creation-date refresh-frequency='PT1H'>2005-04-30T05:46:16Z
</creation-date>

</product>
<source>

<more-information>http://www.nws.noaa.gov/forecasts/xml/</more-information>
<production-center>Meteorological Development Laboratory <sub-center>
Product Generation Branch</sub-center>
</production-center>
<disclaimer>http://www.nws.noaa.gov/disclaimer.html</disclaimer>
<credit>http://weather.gov/</credit>
<credit-logo>http://weather.gov/images/xml_logo.gif</credit-logo>
<feedback>http://weather.gov/survey/nws-survey.php?code=xmlsoap</feedback>

</source>
</head>
<data>

<location>
<location-key>point1</location-key>
<point latitude="44.52" longitude="-89.58" />

</location>

CHAPTER 7 ■ SOAP-BASED WEB SERVICES152

<time-layout time-coordinate="local" summarization="12hourly">
<layout-key>k-p24h-n5-1</layout-key>

<start-valid-time period-name="Later Today">2005-04-30T06:00:00-05:00
</start-valid-time>

<end-valid-time>2005-04-30T18:00:00-05:00</end-valid-time>

That’s all there is to calling a SOAP web service: find the location, set it as the proxy, set
the namespace with the uri() method, call the method according to its required parameters,
and do something with the results.

Security Considerations with SOAP Web Services
Calling a SOAP web service usually means calling a remote method, likely located on a remote
computer, possibly on a different network. Furthermore, this method call might traverse an
untrusted network such as the Internet. For all of these reasons, you must be careful with the
data received from a SOAP call. The return from a SOAP method call might contain malicious
data if the remote server was compromised or if someone can spoof the remote server. Addi-
tionally, if the data being transferred is sensitive in nature, you should consider using SSL as
the transport. From your program, all this really means is changing the transport from http:
to https:.

When operating a SOAP server, you must be careful that the server itself doesn’t become
compromised. This means running the server as a nonprivileged user and using a firewall to
limit any remote calls of the method or methods being served by the SOAP server. If the server
does become compromised through the SOAP server, at least the user will have privileges of
only a local user, as opposed to the root user. Additionally, if you’re running a SOAP server
that includes methods to send sensitive data, consider using a secure transport such as SSL to
ensure that eavesdroppers can’t view the data as it traverses the network.

Summary
In this chapter, you learned about SOAP web services through Perl. Specifically, you were
introduced to SOAP itself with a brief introduction to the protocol. Next, you met SOAP::Lite
and saw how to consume SOAP web services. You also saw how to create a SOAP listener with
Perl. Finally, you looked at a real-world example of a SOAP service by calling the National
Weather Service's SOAP forecast service.

In the next chapter, you’ll be introduced to RSS and Perl.

153

C H A P T E R 8

■ ■ ■

Perl and RSS

RSS (an abbreviation for Rich Site Summary or RDF Site Summary) is used to syndicate con-
tent from a web site. RSS is helpful for gathering headlines and other news-related items from
web sites or getting recent changes to a web page. It’s common for an end user to use news
aggregation software to consume RSS feeds. Web browsers such as Mozilla Firefox also enable
RSS feeds to be used as bookmarks.

Various Perl modules handle RSS feeds. Some of the modules, such as XML::RSS, are gen-
eral and designed to work with most any RSS feed; others are specific to a particular site’s RSS
feed. For example, XML::RSS::Headline::PerlJobs gets the headlines from jobs.perl.org, and
XML::RSS::Headline::Fark gets headlines from the popular Fark web site.

This chapter looks at RSS from a Perl perspective. Specifically, you’ll see how to consume
and create RSS feeds using the XML::RSS module.

RSS: Versioning Fun
At the time of this writing, there are four versions of the RSS protocol: 0.90, 0.91, 1.0, and 2.0.
Some aggregation software works with only certain versions of the protocol. The aggregators
may support a limited subset of a newer version, or they may not support a newer version at
all. Similarly, the Perl modules may or may not support every version of the RSS protocol.
Some RSS modules handle the versions well, simply ignoring things that they don’t imple-
ment, while others don’t fail so gracefully. The best method for determining whether the
module you’re using works with a particular version of RSS is to read the documentation for
that particular module.

For those not familiar with RSS, you can pull up an RSS feed through your web browser. You
can point your browser at the example used throughout the chapter: http://www.spc.noaa.gov/
products/spcwwrss.xml. You should be able to view it in a manner similar to Figure 8-1.

CHAPTER 8 ■ PERL AND RSS154

Reading RSS with XML::RSS
The previous chapter described how to consume a SOAP-based web service from the United
States National Weather Service. The National Weather Service has a division called the Storm
Prediction Center (SPC), which handles the forecasting of severe or extreme weather events
for the United States. The SPC home page is http://www.spc.noaa.gov/. Among the many
products offered for current conditions and forecasting is an RSS feed of mesoscale discus-
sions, convective outlooks, and watches. Here, you’ll see how to consume the RSS feed for
weather watches offered by the National Weather Service.

Figure 8-1. An RSS feed as seen through a web browser

CHAPTER 8 ■ PERL AND RSS 155

You’ll use the XML::RSS module for reading an RSS feed. XML::RSS is available within many
Linux distributions or from your favorite CPAN mirror. XML::RSS includes methods to both
parse (read) and create (write) RSS feeds.

Parsing RSS Feeds
This section looks specifically at parsing an RSS feed for interesting items. While XML::RSS can
work with RSS feeds, it does not include methods to retrieve the actual RSS from the Internet.
For this functionality, you can turn to LWP::Simple, which was covered in Chapter 5.

Parsing an RSS feed can be broken into three basic steps:

1. Get the RSS.

2. Parse the RSS.

3. Do something with the RSS.

To accomplish the first task, LWP::Simple will retrieve the RSS feed and place it into a variable.
XML::RSS can perform the second task. The third task is accomplished by you, doing whatever it is
that you would like to do with the program, assisted by XML::RSS methods.

Here are the beginning bits of code for the program to be built in this section:

use strict;
use XML::RSS;
use LWP::Simple;

These lines of code import the modules into the program’s namespace and also enable
the strict pragma.

The URL for the SPC’s Weather Watch RSS feed is http://www.spc.noaa.gov/products/
spcwwrss.xml. Therefore, you can retrieve it by using the get() method of LWP::Simple, as
shown here:

my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");

The data from the RSS feed is saved into the $url variable for later use. If you would like to
debug to ensure that the RSS was actually retrieved, you can use a simple print statement:

print $url;

For example, here’s the output from that print statement:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
<channel>
<title>Storm Prediction Center Tornado/Severe Thunderstorm Watches</title>
<link>http://www.spc.noaa.gov/</link>
<description>Storm Prediction Center</description>
<lastBuildDate>Mon, 11 Jul 2005 22:01:02 +0000</lastBuildDate>
<ttl>3</ttl>
<language>en-us</language>
<managingEditor>jay.liang@noaa.gov</managingEditor>
<webMaster>spc.feedback@noaa.gov</webMaster>

CHAPTER 8 ■ PERL AND RSS156



<item>
<link>http://www.spc.noaa.gov/products/watch/ww0635.html</link>
<title>SPC Severe Thunderstorm Watch 635</title>
<description>WW 635 SEVERE TSTM CO KS NE 112055Z - 120400Z</description>

</item>
<item>
<link>http://www.spc.noaa.gov/products/watch/ws0635.html</link>
<title>SPC Severe Thunderstorm Watch 635 Status Reports</title>
<description>Storm Prediction Center Severe Thunderstorm Watch 635 Status

Reports</description>
</item>

</channel>
</rss>

■Note Unless all you want to do is print the RSS to STDOUT, you would obviously use the print statement
only for debugging. Otherwise, comment it out or remove it entirely.

The first order of business is to instantiate an RSS object, which I’ll call $rss in this code.
Next, you parse the RSS that was retrieved by LWP::Simple using the parse() method of
XML::RSS.

my $rss = XML::RSS->new;
$rss->parse($url);

With the RSS parsed, it’s now a matter of gleaning from the RSS whatever information is
useful for your program using one of the XML::RSS methods, iterating through a hash of items,
and so on. For example, you might use the channel() method, which enables you to print the
title, the link the description, and other information about the RSS feed:

print $rss->channel('title'), "\n";

Each item within the RSS feed is placed into an array and can be referenced by iterating
through the array, as shown in this example:

foreach my $item (@{$rss->{'items'}}) {
print "Title: $item->{'title'}\n";
print "Desc: $item->{'description'}\n";
print "Link: $item->{'link'}\n";

}

CHAPTER 8 ■ PERL AND RSS 157

In the example, each item is placed into the scalar variable $item, and then attributes of
this scalar variable are called, as you see by the print statements to output the title, descrip-
tion, and link. The entire program is shown in Listing 8-1.

Listing 8-1. An Initial RSS Example

#!/usr/bin/perl

use strict;
use XML::RSS;
use LWP::Simple;

my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");

Debugging - Comment out when not debugging
#print $url;

my $rss = XML::RSS->new;
$rss->parse($url);

print $rss->channel('title'), "\n";
foreach my $item (@{$rss->{'items'}}) {

print "Title: $item->{'title'}\n";
print "Desc: $item->{'description'}\n";
print "Link: $item->{'link'}\n";

}

When executed, the program produces this output:

Storm Prediction Center Tornado/Severe Thunderstorm Watches
Title: SPC Severe Thunderstorm Watch 587
Desc: WW 587 SEVERE TSTM KS NE 031245Z - 031800Z
Link: http://www.spc.noaa.gov/products/watch/ww0587.html
Title: SPC Severe Thunderstorm Watch 587 Status Reports
Desc: Storm Prediction Center Severe Thunderstorm Watch 587 Status Reports
Link: http://www.spc.noaa.gov/products/watch/ws0587.html

Be aware that some sites monitor the number of RSS retrievals performed from a specific
IP address within a certain time period. This is because of abuse by some people who retrieve
the RSS looking for updates too frequently. For example, some people have been known to con-
figure their RSS aggregator to request the RSS feed every few seconds. While one user doing this
wouldn’t likely cause a performance degradation, if 1,000 users requested constant updates,
that would quickly lead to a distributed denial of service. Therefore, be careful when debugging
the script that you don’t request the RSS feed too many times and get blocked in the process! In
the next section, you’ll see a method for developing your script so that it doesn’t cause the site
operator to lose sleep.

CHAPTER 8 ■ PERL AND RSS158

Debugging RSS Scripts
While you’re developing a script to retrieve an RSS feed, it’s not uncommon to run that script
multiple times within a short period. As I just mentioned, this can, on certain sites, cause your
IP address to get blocked for abusive RSS requests. The site operator who owns the RSS feed
likely won’t be able to tell the difference between someone debugging a script and someone
requesting constant RSS updates.

Here’s how I solve the problem: When developing the script, I use LWP::Simple to retrieve
the RSS and print the resulting RSS to STDOUT using the print statement shown in the pre-
ceding section. Then I save the output to a file by using a simple shell redirect.

For example, assume you created a script to retrieve an RSS feed called get_rss.pl. That
script looks like this:

#!/usr/bin/perl

use strict;
use XML::RSS;
use LWP::Simple;

my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");

print $url;

You run the script, and the output is printed to STDOUT. Redirect that output to a file:

./get_rss.pl > spc_rssfeed.xml

With the RSS contained in the file, you’ll be able to use the XML::RSS parsefile() method
to parse the RSS feed, rather than requesting the RSS from the site again. Recall the example
shown in the previous section. Instead of using the get() method, you comment that out and
use the parsefile() method, along with an argument of the filename containing the RSS feed,
as shown in Listing 8-2.

Listing 8-2. Debugging an RSS Feed Script

#!/usr/bin/perl

use strict;
use XML::RSS;
use LWP::Simple;

#my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");

Debugging - Comment out when not debugging
#print $url;

my $rss = XML::RSS->new;
$rss->parsefile("spc_rssfeed.xml");

CHAPTER 8 ■ PERL AND RSS 159

print $rss->channel('title'), "\n";
foreach my $item (@{$rss->{'items'}}) {

print "Title: $item->{'title'}\n";
print "Desc: $item->{'description'}\n";
print "Link: $item->{'link'}\n";

}

Once the script has been developed and debugged, you uncomment the get() method and
change the parsefile() method to the parse() method. This extra bit of work makes the site
operator of the RSS feed happy and can prevent you from getting blocked.

Writing RSS with XML::RSS
Along with parsing an RSS feed, XML::RSS can also write RSS. Some of the same methods used
for parsing an RSS feed with XML::RSS are used in creating one, and others are simply reversed;
instead of reading with the methods, you write with them.

As an example, let’s see how to build an RSS feed using repackaged data from the National
Weather Service’s Weather Watch RSS. I live in Wisconsin. Therefore, I’m interested in weather
events in and around the state of Wisconsin. It would be nice to be able to ignore watches for
other states and produce an RSS file that contains only items relevant to my area. (Fortunately,
there are no weather watches for my area on the day that I’m writing this chapter. Therefore,
I’ll also be checking in Kansas, since I know there’s a weather watch there, and I’ll also include
the states of Minnesota, and Iowa.)

When creating an RSS feed with XML::RSS, you can set the RSS version. If not specified,
the default version is 1.0. Since this program will repackage data from the SPC’s RSS feed, the
opening bits of the program are much the same as the previous examples:

use strict;
use XML::RSS;
use LWP::Simple;
my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");
my $rss = XML::RSS->new;
$rss->parse($url);

The existing XML::RSS object, $rss, is used to parse the incoming RSS feed. Therefore, you
need a new XML::RSS object to create the new feed. I’ll call this new object $rsswriter:

my $rsswriter = XML::RSS->new;

Since no version is specified, version 1.0 will be used. However, if you wanted to specify
the version, the statement would look like this for a version 0.91 feed:

my $rsswriter = XML::RSS->new(version => '0.91');

Instead of reading the channel information as in the previous example, this time, you’re
creating your own RSS channel.

CHAPTER 8 ■ PERL AND RSS160

$rsswriter->channel(
title => "My Watch Summary",
link => "http://www.braingia.org/",
description => "Weather Watches for KS, IA, MN, and WI"

);

As in the previous examples, you iterate over each item of the incoming RSS feed. Instead
of printing all of the items to STDOUT, this time, each one is examined to see if the description
contains one of the four states that you’re interested in for this example. If one of those states is
listed within the incoming item’s description, the add_item() method is called on the $rsswriter
object:

foreach my $item (@{$rss->{'items'}}) {
if ($item->{'description'} =~ /KS|WI|IA|MN/) {

$rsswriter->add_item(
title => $item->{'title'},
description => $item->{'description'},
link => $item->{'link'}

);
}

}

Once each item in the incoming feed has been examined, it’s time to write the RSS feed.
You can do this by using the save() method or by printing the feed with the as_string() method.
I chose to save the RSS feed to a file called mywatchsummary.xml:

$rsswriter->save("mywatchsummary.xml");

If you would rather print the RSS to STDOUT, use a print statement with the as_string()
method:

print $rsswriter->as_string;

Regardless of which method you use, the resulting file or output looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/"
xmlns:taxo="http://purl.org/rss/1.0/modules/taxonomy/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:syn="http://purl.org/rss/1.0/modules/syndication/"
xmlns:admin="http://webns.net/mvcb/"
>

<channel rdf:about="http://www.braingia.org/">
<title>Watch Summary for Western Great Lakes</title>
<link>http://www.braingia.org/</link>

CHAPTER 8 ■ PERL AND RSS 161

<description>Weather Watches for IA, MN, and WI</description>
<items>
<rdf:Seq>
<rdf:li rdf:resource="http://www.spc.noaa.gov/products/watch/ww0587.html" />
</rdf:Seq>
</items>
</channel>

<item rdf:about="http://www.spc.noaa.gov/products/watch/ww0587.html">
<title>SPC Severe Thunderstorm Watch 587</title>
<link>http://www.spc.noaa.gov/products/watch/ww0587.html</link>
<description>WW 587 SEVERE TSTM KS NE 031245Z - 031800Z</description>
</item>

</rdf:RDF>

If you wanted to, you could also use the output attribute to convert between RSS versions.
For example, the previously shown output is version 1.0. However, using the output attribute of
the XML::RSS object, $rsswriter, you can change this to a different version on the fly. For exam-
ple, the code to change the version just prior to printing the output looks like this:

$rsswriter->{'output'} = '0.91';
print $rsswriter->as_string;

The resulting output would show the change:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
"http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">

<channel>
<title>My Watch Summary</title>
<link>http://www.braingia.org/</link>
<description>Weather Watches for KS, IA, MN, and WI</description>

<item>
<title>SPC Severe Thunderstorm Watch 587</title>
<link>http://www.spc.noaa.gov/products/watch/ww0587.html</link>
<description>WW 587 SEVERE TSTM KS NE 031245Z - 031800Z</description>
</item>

</channel>

The final program is shown in Listing 8-3.

CHAPTER 8 ■ PERL AND RSS162

Listing 8-3. Retrieving Weather Watches with RSS

#!/usr/bin/perl

use strict;
use XML::RSS;
use LWP::Simple;

my $url = get("http://www.spc.noaa.gov/products/spcwwrss.xml");

my $rss = XML::RSS->new;
$rss->parse($url);

my $rsswriter = XML::RSS->new;

$rsswriter->channel(
title => "My Watch Summary",
link => "http://www.braingia.org/",
description => "Weather Watches for KS, IA, MN, and WI"

);

foreach my $item (@{$rss->{'items'}}) {
if ($item->{'description'} =~ /KS|WI|IA|MN/) {

$rsswriter->add_item(
title => $item->{'title'},
description => $item->{'description'},
link => $item->{'link'}

);
}

}

$rsswriter->save("mywatchsummary.xml");

The XML:RSS module contains other methods and attributes that you may find helpful for
your own RSS writing projects. Look over the perldoc for XML::RSS for more information about
these methods and attributes.

Security Considerations with RSS
Creation of your own RSS feeds doesn’t pose any great security risk in itself. Of course, you don’t
want to release any sensitive information through an RSS feed, just as you wouldn’t want to allow
access to certain data through a web page or CGI program.

Consuming an RSS feed carries with it the same risks inherent in any external data source.
You should be sure that all data external to your program is safe for use within the program. If
an RSS feed contains malicious data, using it within your program puts the program and the
system at risk.

CHAPTER 8 ■ PERL AND RSS 163

Summary
This chapter dealt with RSS feeds through Perl, covering both creation and consumption of
RSS feeds. Specifically, you saw how to parse and write RSS using the XML::RSS module. Other
modules for parsing and writing RSS with Perl, such as XML::RSS::Feed, are available.

When parsing an RSS feed, you create a new RSS object to parse an RSS file. Retrieval of the
RSS file is left for another module. In this chapter, you saw how to use LWP::Simple to retrieve an
RSS feed from an Internet site, but you can use any means to get an RSS feed into the parser,
including using a local file. A local file is recommended when developing and debugging the RSS
feed, so that the site operator doesn’t misinterpret the repeated retrieval requests.

Many of the same methods are used for both parsing and writing an RSS feed. You can
choose and change the version for writing RSS by specifying it at instantiation time or with
the output attribute.

This and the previous chapter have both touched on XML-related services in one form or
another and provided a good introduction into XML applications in the real world. In the next
chapter, you’ll finally look at straight XML parsing with Perl.

165

C H A P T E R 9

■ ■ ■

XML Parsing with Perl

You have some data in XML. Maybe that data is from a SOAP web service, maybe it’s from an
RSS feed, or maybe it’s from another source. Now you want to read the XML and extract the data
from it. As is the theme with Perl, you have multiple ways to accomplish this task.

XML parsing with Perl has a storied history. Early modules were quirky, while others were
incomplete.

Parsing simple XML with Perl is, well, simple. Parsing complex XML with Perl can be quite
difficult. The important thing to remember is that XML is just a way to represent data. That data
happens to be in an XML document. The program that you write to parse XML will first need
to read the XML, and then use the results as it would any other data input.

This chapter looks at XML parsing with Perl. It first reviews the main parsing methods,
and then describes using two modules: XML::Simple and XML:SAX. Finally, it examines tree-
based parsing.

XML Parsing Methods
Recall that there’s always more than one way to do the same thing with Perl. XML parsing is
no different. And, of course, there’s no rule that says that you must use an XML parser at all.
It’s quite possible for you to write your own XML parser, just as it would be possible to write
your own module for anything in Perl, rather than using an already existing module.

Primarily, two methods exist for parsing an XML document:

Stream parsing: Stream-based parsers process XML as it is read into the parser. As new ele-
ments are encountered (which are called tokens), they are processed by the parser and sent
into your program through a process of events. This means that the program must process
each piece of data as it is encountered by the stream-based parser. Stream-based parsers
have lower memory requirements than their tree-based counterparts, simply because they
don’t store any data; rather, they send data along into the rest of the program as it is found.
Of course, the lower memory requirements are gained at the expense of complexity when
compared to tree-based parsers.

Tree parsing: Tree-based parsers load entire XML structures into memory for later processing.
This means that the entire document is parsed prior to your program needing to handle it. In
turn, this leads to less complex programs when compared to stream-based parsing. The extra
simplicity comes at the cost of higher memory requirements. Naturally, on a modern com-
puter with a small document to parse, the memory required will be minimal.

CHAPTER 9 ■ XML PARSING WITH PERL166

At their core, all XML parsers are stream parsers. It’s just that some build a tree structure
on top of the stream automatically for you. XML::Parser is an example of an early (although
still useful) stream parser in Perl. XML::SAX, or the Simple API for XML, is another stream-
based implementation, which will be covered later in this chapter.

XML Parsing Considerations
The following are some important general reminders and caveats for working with XML in Perl:

• When you build a program to parse XML, it really exists only for that XML. This means
that the program to parse the XML will invariably be largely one-time-use code.

• There are many Perl modules for parsing XML and assisting with XML work. Regardless
of which module you use, it is expected that the XML used as input will be well-formed.
The XML parsing modules will likely produce wonky results—if they produce any results
at all—when presented with poorly formed XML.

• Not all XML modules can handle all aspects of XML such as namespaces, entities, and
declarations, or at best, they don’t all handle those objects the same way. It’s important
to make sure the output is correct, rather than just looks correct. A small and subtle
change to the XML input could break the program if a module is being used incorrectly.

• Spacing and character encodings are important items to consider when parsing XML.
It’s possible for white space or unfamiliar or unexpected character encodings to cause
unexpected results.

Parsing XML with XML::Simple
XML::Simple is an example of a tree-based XML parser, which is, well, simpler to use than
other XML parsers. XML::Simple has just two subroutines: XMLin() and XMLout(). XMLin() is
used to read an XML structure into an in-memory hash. The source of this XML is usually
a string or file. From the XMLin() subroutine comes a reference to a hash. XMLout() creates
XML when passed a reference to a hash that contains an encoded document.

Consider this bit of XML:

<?xml version="1.0"?>
<customer-data>
<customer>

<first_name>Frank</first_name>
<last_name>Sanbeans</last_name>
<dob>3/10</dob>
<email>frank@example.com</email>

</customer>
<customer>

<first_name>Sandy</first_name>
<last_name>Sanbeans</last_name>
<dob>4/15</dob>
<email>sandy@example.com</email>

</customer>
</customer-data>

CHAPTER 9 ■ XML PARSING WITH PERL 167

This XML is saved in a file titled example1.xml. The code to parse this XML structure is as
follows:

#!/usr/bin/perl

use strict;
use XML::Simple;

my $xml = XMLin('./example1.xml',forcearray => 1);

foreach my $customer (@{$xml->{customer}}) {
print "Name: $customer->{first_name}->[0] ";
print "$customer->{last_name}->[0]\n";
print "Birthday: $customer->{dob}->[0]\n";
print "E-mail Address: $customer->{email}->[0]\n";

}

The code begins with the familiar use strict pragma, and then imports XML::Simple into
the namespace:

use XML::Simple;

The XMLin() subroutine is called using the name of the file and setting the forcearray option.
The XMLin() subroutine returns an array reference, which is what the forcearray => 1
option does:

my $xml = XMLin('./example1.xml',forcearray => 1);

Next, the array reference is dereferenced into its components. In the sample XML, each
element is broken into a customer element at its base with a number of other elements below.
Each of these elements is called and printed in turn within the foreach loop:

foreach my $customer (@{$xml->{customer}}) {
print "Name: $customer->{first_name}->[0] ";
print "$customer->{last_name}->[0]\n";
print "Birthday: $customer->{dob}->[0]\n";
print "E-mail Address: $customer->{email}->[0]\n";

}

This program is rather simple and does nothing more than print out each element listed
for both customers in the file. Obviously, you could expand this to perform additional functions
within the foreach loop. The output looks like this:

Name: Frank Sanbeans
Birthday: 3/10
E-mail Address: frank@example.com
Name: Sandy Sanbeans
Birthday: 4/15
E-mail Address: sandy@example.com

CHAPTER 9 ■ XML PARSING WITH PERL168

The code shown uses the forcearray option, which isn’t really necessary. The XML being
parsed in this example consists of solely single values—each customer record has one and
only one value for date of birth, e-mail address, and so on. Another method to parse this par-
ticular XML looks like this:

#!/usr/bin/perl

use strict;
use XML::Simple;

my $xml = XMLin('./example1.xml');

foreach my $customer (@{$xml->{customer}}) {
print "Name: $customer->{first_name} $customer->{last_name}\n";
print "Birthday: $customer->{dob}\n";
print "E-mail Address: $customer->{email}\n";

}

The difference between this and the previously shown code is subtle. Missing from this
example is the reference to the first element in the array ->[0]. When parsing XML with mul-
tivalued elements, accessing those elements with forcearray makes access to the elements
much easier, as you’ll see a bit later in the “XML::Simple Options” section.

Data::Dumper
An even simpler, though arguably less useful method, for parsing an XML file with XML::Simple is
to use Data::Dumper. You can use the Data::Dumper module to quickly print out the XML as it is
being read and processed by the XMLin() subroutine. Doing so helps during debugging and in
other cases, such as working with databases. Rather than using the foreach loop in the previous
example, you could use Data::Dumper to print the contents of the XML, as shown in this example:

#!/usr/bin/perl

use strict;
use XML::Simple;
use Data::Dumper;

my $xml = XMLin('./example1.xml',forcearray => 1);

print Dumper($xml);

Compare the output from the earlier example with the output from the Data::Dumper ver-
sion of the program:

$VAR1 = {
'customer' => [

{
'email' => [

'frank@example.com'
],

CHAPTER 9 ■ XML PARSING WITH PERL 169

'dob' => [
'3/10'

],
'last_name' => [

'Sanbeans'
],

'first_name' => [
'Frank'

]
},
{
'email' => [

'sandy@example.com'
],

'dob' => [
'4/15'

],
'last_name' => [

'Sanbeans'
],

'first_name' => [
'Sandy'

]
}

]
};

Notice that each element in the Data::Dumper version is placed into its own array. This was
the result of enabling the forcearray option. Contrast that output with a call to XMLin() with
forcearray disabled:

$VAR1 = {
'customer' => [

{
'email' => 'frank@example.com',
'dob' => '3/10',
'last_name' => 'Sanbeans',
'first_name' => 'Frank'

},
{
'email' => 'sandy@example.com',
'dob' => '4/15',
'last_name' => 'Sanbeans',
'first_name' => 'Sandy'

}
]

};

CHAPTER 9 ■ XML PARSING WITH PERL170

XML::Simple Options
Some XML::Simple options are more important than others. This section examines two fre-
quently used XML::Simple options: forcearray and KeyAttr. For a full listing and explanation
of all of the XML::Simple options, see perldoc XML::Simple.

Forcearray
You already saw the forcearray option in an example, but that example didn’t really need to
have forcearray enabled. Consider this XML:

<?xml version="1.0"?>
<customer-data>
<customer>

<first_name>Frank</first_name>
<last_name>Sanbeans</last_name>
<dob>3/10</dob>
<email>frank@example.com</email>
<vehicle>Volvo S60</vehicle>
<vehicle>Honda Accord</vehicle>

</customer>
<customer>

<first_name>Sandy</first_name>
<last_name>Sanbeans</last_name>
<dob>4/15</dob>
<email>sandy@example.com</email>
<vehicle>McLaren MP4-20</vehicle>
<vehicle>Chevrolet S-10</vehicle>

</customer>
</customer-data>

The following is code to parse this XML. Notice its similarities to the first example shown
in the chapter.

#!/usr/bin/perl

use strict;
use XML::Simple;

my $xml = XMLin('./xml_example2',forcearray=>1);

foreach my $customer (@{$xml->{customer}}) {
print "Name: $customer->{first_name}->[0] ";
print "$customer->{last_name}->[0]\n";
print "Birthday: $customer->{dob}->[0]\n";
print "E-mail Address: $customer->{email}->[0]\n";
print "Vehicle(s): @{$customer->{vehicle}}\n";

}

CHAPTER 9 ■ XML PARSING WITH PERL 171

The code reads in the XML with the forcearray option enabled. Each value is then accessed
through its dereferenced array index. The exception is the <vehicle> element, which may be mul-
tivalued. The <vehicle> element is printed by using an array reference to that specific element.

Since four of the five elements in this XML data structure can have only one value, you
may want to specify which elements should go into an array, instead of rolling every element
into an array. Instead of merely accepting 1 for enabled and 0 for disabled, the forcearray
option can accept a comma-separated list of elements that should be rolled into an array.
Continuing with the previous example, using forcearray just for the <vehicle> element
looks like this:

#!/usr/bin/perl

use strict;
use XML::Simple;

my $xml = XMLin('./xml_example2',forcearray=> ['vehicle']);

foreach my $customer (@{$xml->{customer}}) {
print "Name: $customer->{first_name} ";
print "$customer->{last_name}\n";
print "Birthday: $customer->{dob}\n";
print "E-mail Address: $customer->{email}\n";
print "Vehicle(s): @{$customer->{vehicle}}\n";

}

Notice in this example that the array index ->[0] is now gone for the original four elements,
since those are no longer rolled into an array by XML::Simple.

KeyAttr
The KeyAttr option is used to control how elements are rolled into arrays and hashes. Recall
an earlier example showing an XML structure as displayed with Data::Dumper. Changing the
key attribute to be the <email> element reveals this output:

$VAR1 = {
'customer' => {

'frank@example.com' => {
'dob' => '3/10',
'first_name' => 'Frank',
'last_name' => 'Sanbeans'

},
'sandy@example.com' => {

'dob' => '4/15',
'first_name' => 'Sandy',
'last_name' => 'Sanbeans'

}
}

};

CHAPTER 9 ■ XML PARSING WITH PERL172

The code that produced this output is similar to the earlier Data::Dumper example. Notice
the use of the KeyAttr option in the call to the XMLin() subroutine.

#!/usr/bin/perl

use strict;
use XML::Simple;
use Data::Dumper;

my $xml = XMLin('./example1.xml',forcearray=> ['vehicle'],KeyAttr=>[
'email'] TheSansMonoConNormal
);
print Dumper($xml);

■Note Take a look through the perldoc for XML::Simple. The documentation for this module is quite good
and actually helps to sort out the options into categories such as important, handy, advanced, and others.

Parsing XML with XML::SAX
XML::SAX is a stream-based parser. When XML is parsed by XML::SAX, each new element
encountered signals an event to the parser. XML::SAX hands off the processing for that
event to the appropriate method. It’s your responsibility to write handlers for events as
they are passed by XML::SAX. For example, XML::SAX will encounter the beginning of an
XML tag. When it does so, it passes the information along in an event stream to the parser.
This parser implements a number of handlers to work with that event. The data from the
event is usually placed inside a hash, but that depends on the type of event.

There are parsers already written for XML::SAX. Two such handlers are XML::LibXML::
SAX::Parser and XML::SAX::PurePerl. XML::LibXML::SAX::Parser requires the libxml2 library
and is written in C. As you might guess by the name, XML::SAX::PurePerl is written entirely in
Perl. These two handlers, along with others for XML::SAX, may be already installed on your sys-
tem. In practice, you’ll find that you’ll be writing your own parser more often than not.

This program prints a list of the available parsers on your system:

#!/usr/bin/perl

use XML::SAX;
use strict;

my @parsers = @{XML::SAX->parsers()};

foreach my $parser (@parsers) {
print "--> ", $parser->{ Name }, "\n";

}

CHAPTER 9 ■ XML PARSING WITH PERL 173

On my Debian (Sarge) system, the output looks like this:

--> XML::SAX::PurePerl
--> XML::LibXML::SAX::Parser
--> XML::LibXML::SAX
--> XML::SAX::Expat

A parser is chosen through the XML::SAX::ParserFactory interface. However, in practice,
programmers frequently leave it up to XML::SAX to decide which parser to use, with the default
being decided by the order in which the parsers were installed. Though this may sound
blatantly obvious, parsers implement functions to parse XML. The parser methods
include parse_uri(), parse_file(), and so on.

It’s important to realize the difference, from an XML::SAX standpoint, between a parser
and a handler. A parser is usually software in the form of a Perl module that is installed with
XML::SAX or can be installed from CPAN. A handler, on the other hand, is software that you
write as part of the XML parsing programming task. The parser is created or instantiated by
the XML::SAX::ParserFactory and is passed an argument telling it which handler will be used.
The handler then implements interfaces for events handed to it from the parser. Note that
a parser can be passed numerous arguments in addition to the name of the handler to use.

XML::SAX Parser Methods
As previously stated, a parser implements several methods for parsing XML. For most of the
methods, you pass the XML as an argument, as well as other options for parsing. The parser
methods are as follows:

• parse([options]): This is a generic method that can accept optional options in list,
name=>value pairs, or hash format.

• parse_uri(uri [, options]): This is a commonly used method to parse XML as
denoted by the URI.

• parse_file(filestream [, options]): This method parses a filestream such as a file-
handle. Do not confuse this method with an argument of a plain file rather than
a stream.

• parse_string(string [, options]): This method parses the XML contained in the
string passed to it.

SAX2 Handler Interfaces
The handler that you create will need to implement code to handle events as they are passed
in by the parser. XML::SAX provides access to events to ensure that the SAX2 specification is
met. XML::SAX and related parsers also work with namespaces.

Logically, XML::SAX events and handlers can be grouped into categories. Many of the more
common handlers fall into the category of content handlers. Content handlers work with the
actual content of the document itself, and so content handlers are where you’ll spend a large
amount of time coding. Another important category of handlers includes the error handlers that
enable you to create custom error handling code. Other handlers include lexical handlers
that work with CDATA sections, comments, DTDs, and entities. The following sections look at
content and error event handlers.

CHAPTER 9 ■ XML PARSING WITH PERL174

Content Event Handlers
This following are some of the event handlers that you’ll encounter when working through the
content of the XML:

• start_document(document): The start_document() method is sent with an empty
document parameter.

• end_document(document): The end_document() method can be called at the end of the XML
input or when an error occurs. Whatever this method returns—whether it’s an error con-
dition or normal condition—it will be used as the return value by the parse() method.

• start_element(element): The start_element() method is called when a new start tag
is found. The method is passed a hash parameter, element, containing the following:

• Name: The name of the element, including any namespace prefix.

• Attributes: Contains a hash of attributes, if any. Be careful not to confuse the
attributes with other XML data. The attributes are themselves a hash. The attrib-
utes hash contains Name (full name, including prefix), Value (value of the attribute,
trimmed to remove spaces), NamespaceURI (URI) for the namespace, Prefix (por-
tion of the full name before the local portion), and LocalName (portion of the full
name that is local).

• NamespaceURI: The namespace for the element.

• Prefix: The prefix for the name.

• LocalName: The portion of the full name that is local.

• end_element(element): The end_element() method is called when a new end tag is
found. The method is passed a hash parameter, element, containing the following:

• Name: The name of the element, including any namespace prefix.

• NamespaceURI: The URI for the namespace.

• Prefix: The portion of the full name before the local portion.

• LocalName: The portion of the full name that is local.

• characters(data): The characters() method is used for any character data (plain text)
in the XML. This method is most frequently used to obtain the actual values contained
within the XML, but there’s no guarantee that this method will be called for only those
values. In other words, it could be called for any other character data encountered in
the XML. The data parameter is a hash containing the string of characters.

Other content handlers include processing_instruction, skipped_entity,
ignorable_whitespace, and set_document_locator, among others. See the perldoc on
XML::SAX for more information about these and other content event handlers that you
may want to code into your handler.

CHAPTER 9 ■ XML PARSING WITH PERL 175

Error Event Handlers
Three error event handlers exist:

• warning(): A warning is an error that doesn’t stop the parser but is notable nonetheless.
You can choose to forego implementing this handler; in which case, the parser will sim-
ply ignore the warning.

• error(): An error is a serious event, but the parser will continue. An invalid XML docu-
ment is an example of an error.

• fatal_error(): The most serious of the error events, as the name implies, this type of
event can cause processing of XML to stop, though the parser may choose to continue.

Each handler accepts a single argument: the exception.

A Basic Parser and Handler
Now that you have an idea of the theory of parsing XML with XML::SAX, as well as a look at
some of the more important events to be implemented by your handler, it’s time to get busy
with coding your first parser. This section will show you how to code a parsing routine using
XML::SAX by creating your own handler for some content events. First, recall the XML from
earlier in the chapter. This XML will be used throughout this section:

<?xml version="1.0"?>
<customer-data>
<customer>

<first_name>Frank</first_name>
<last_name>Sanbeans</last_name>
<dob>3/10</dob>
<email>frank@example.com</email>
<vehicle>Volvo S60</vehicle>
<vehicle>Honda Accord</vehicle>

</customer>
<customer>

<first_name>Sandy</first_name>
<last_name>Sanbeans</last_name>
<dob>4/15</dob>
<email>sandy@example.com</email>
<vehicle>McLaren MP4-20</vehicle>
<vehicle>Chevrolet S-10</vehicle>

</customer>
</customer-data>

Two elements involved in parsing with XML::SAX: the parser, or main program code, and
the handler code. The first task is to create the main program code, which will import XML::SAX
into the namespace and set up the parser, as well as perform any other functions that you might
want the program to perform outside the XML-specific items. Then you write the handler code,
which will largely be specific to the XML being parsed.

CHAPTER 9 ■ XML PARSING WITH PERL176

Coding the Main Program
You use the use pragma to import XML::SAX into the namespace. However, an additional use
pragma is also necessary in order to import your yet-to-be-coded handler package.

use XML::SAX;
use MyHandler;
use strict;

Since this handler package is something that you will create, you can name it as you wish
(assuming a valid name, of course). Don’t fret the details of the handler package yet; you’ll be
coding it shortly.

Next, create a parser object and pass it a reference to the handler that you’ll be creating:

my $parser = XML::SAX::ParserFactory->parser(Handler => MyHandler->new);

One of the parser methods is called next. For this example, assume that the XML is stored
in a file called example1.xml in the current directory:

$parser->parse_uri("example1.xml");

That’s all there is to the code for the main program. Save the main program as xml-custom.pl
and make it executable (chmod 700 xml-custom.pl).

This code is rather simple. The key to the code is within the handler package, MyHandler,
which you’ll create as a separate file. This program, as it stands now, will produce an error if
you attempt to execute it, since the handler package doesn’t exist yet.

Creating the Handler Package
With the main program coded, the parser will be invoked and will attempt to pass events to
the specified handler. Create a separate file, called MyHandler.pm, to hold the code for the
custom handler. The handler package is coded as shown in Listing 9-1.

Listing 9-1. A Handler for Parsing XML

package MyHandler;
use base qw(XML::SAX::Base);

sub start_document {
my $self = shift;
my $document = shift;

}

sub start_element {
my $self = shift;
my $element = shift;

CHAPTER 9 ■ XML PARSING WITH PERL 177

print $element->{LocalName}, " = ";
}
sub characters {

my $self = shift;
my $char = shift;
print $char->{Data};

}
1;

The first task within the code is to declare it as a package:

package MySAXHandler;

From there, the XML::SAX::Base methods are imported into the namespace. This enables
the handler package to take advantage of the XML::SAX framework:

use base qw(XML::SAX::Base);

Three subroutines follow: start_document(), start_element(), and characters(). Each of
these is invoked by the parser as it works through the XML input. The start_document() routine
is mostly a placeholder in this application. start_element() is important for parsing XML data.
In this simple example, however, it does nothing more than print the name of each XML element,
such as customer-data, customer, first-name, last-name, and so on, followed by an equal sign
in the output. characters() is where the actual data of the XML is printed as output.

Running the Parser
You’ve created both the main program and the custom handler package. You can now run the
xml-custom.pl program to parse the XML. It should produce this output:

customer-data =
customer =

first_name = Frank
last_name = Sanbeans
dob = 3/10
email = frank@example.com

customer =
first_name = Sandy
last_name = Sanbeans
dob = 4/15
email = sandy@example.com

A common error when parsing XML is to have XML that is not well-formed. Make sure the
XML is well-formed by taking advantage of the Data::Dumper package to print the XML quickly.
Additionally, make sure that the names are correct for the handler package that you created.
For example, importing a misnamed handler package or calling it incorrectly in the main pro-
gram or from within the handler code itself will cause errors.

CHAPTER 9 ■ XML PARSING WITH PERL178

Including Attributes
Attributes are important within XML parlance. They are parsed as part of the start_element()
subroutine, and their use may not be blatantly obvious at first glance. This is because, as you’ll
recall, the attributes are sent as a hash within the elements hash. Here’s the sample XML from
earlier, this time including attributes to indicate that the email element is a required field:

<?xml version="1.0"?>
<customer-data>
<customer required="email">

<first_name>Frank</first_name>
<last_name>Sanbeans</last_name>
<dob>3/10</dob>
<email>frank@example.com</email>
<vehicle>Volvo S60</vehicle>
<vehicle>Honda Accord</vehicle>

</customer>
<customer required="email">

<first_name>Sandy</first_name>
<last_name>Sanbeans</last_name>
<dob>4/15</dob>
<email>sandy@example.com</email>
<vehicle>McLaren MP4-20</vehicle>
<vehicle>Chevrolet S-10</vehicle>

</customer>
</customer-data>

For brevity’s sake, consider the code for the handler package MyHandler to be the same,
with the exception of the start_element() subroutine, which now looks like this:

sub start_element {
my $self = shift;
my $element = shift;

foreach my $key (keys %{ $element->{Attributes}}) {
my $attrib = $element->{Attributes}->{$key};
print $attrib->{Name}, " = ", $attrib->{Value}, "\n";

}
print $element->{LocalName}, " = ";

}

Again, the remainder of the code for MyHandler.pm (Listing 9-1) is exactly the same as the
earlier example. Now there’s a foreach loop to iterate through the keys to the attributes hash
and then print them. The output is as follows. Notice the addition of the required = email line:

customer-data =
required = email
customer =

first_name = Frank
last_name = Sanbeans

CHAPTER 9 ■ XML PARSING WITH PERL 179

dob = 3/10
email = frank@example.com
vehicle = Volvo S60
vehicle = Honda Accord

required = email
customer =

first_name = Sandy
last_name = Sanbeans
dob = 4/15
email = sandy@example.com
vehicle = McLaren MP4-20
vehicle = Chevrolet S-10

You’ve now seen how to parse XML using XML::SAXby creating your own handler for XML::SAX
parser events. However, the examples here have only scratched the surface of XML parsing with
XML::SAX. It is a very powerful specification and package with Perl. I invite you to spend some time
reading the XML::SAX and XML::SAX::Basedocumentation and experimenting with the code and
with more complex examples to parse XML in Perl with this excellent module.

Using Tree-Based Parsing
The chapter began with a look at XML::Simple for parsing simple XML. You then read about
parsing of XML with XML::SAX, a framework around which very complex XML parsing can be
done. Tree-based parsing, or simply tree parsing, is yet another process for parsing XML. This
method delivers the entire XML structure to your program as one logical entity, as opposed to
the delivery in chunks that you get with a stream processor. As noted earlier in the chapter,
tree parsers are almost always stream-based parsers at heart, but they hold the data until the
end of the parsing.

Needing to pass the entire structure at once almost always means that tree parsers have
higher memory requirements than their stream-based counterparts. Since XML structures
can be quite complex, it’s not uncommon to receive an Out of Memory error when using
a tree parser on complex and/or lengthy XML.

Tree parsers include XML::Parser, which can be used both as a tree and a stream parser,
XML::Grove, XML::TreeBuilder, XML::Twig, and XML::SimpleObject, just to name a few. The
parser that you saw earlier in the chapter, XML::Simple, is yet another tree parser.

Each XML parser has its own features and invariably its own syntax as well. XML::Twig, for
example, is interesting in that it can hold part of the XML tree, thus saving memory. XML::Twig
also provides a simple means for converting XML into HTML or into other formats. The fol-
lowing example prints XML using the indented option with XML::Twig:

#!/usr/bin/perl

use strict;
use XML::Twig;

CHAPTER 9 ■ XML PARSING WITH PERL180

my $tree = XML::Twig->new(pretty_print => 'indented');
$tree->parsefile("example1.xml");

$tree->print;

When executed, the output looks as follows:

<customer-data>
<customer>
<first_name>Frank</first_name>
<last_name>Sanbeans</last_name>
<dob>3/10</dob>
<email>frank@example.com</email>

</customer>
<customer>
<first_name>Sandy</first_name>
<last_name>Sanbeans</last_name>
<dob>4/15</dob>
<email>sandy@example.com</email>

</customer>
</customer-data>

As previously stated, each tree parser has different features and strengths. The modules
are still under development and constantly being enhanced.

Security Considerations with XML Parsing
Like other similar tasks, parsing XML with Perl has no inherent risks other than the introduc-
tion of untrusted data into the application. It’s important with XML parsing, as with other tasks
that use external data, to make sure that the data that’s coming in is what you expect for the
particular application you’re coding. Always assume that the data is incorrect or tainted until
you’ve proven otherwise by checking the data against the smallest subset of known good data.

Summary
This chapter examined XML parsing with Perl. The chapter began with an overview of the pars-
ing methods, and then reviewed some of the considerations for parsing XML with Perl, including
making sure that the XML is well-formed and other tips. You examined XML::Simple as a tree
parser for simple XML structures. Then you saw how XML:SAX handles event- or stream-based
XML parsing. Finally, the chapter gave an overview of other tree parsers.

This chapter wraps up this part on XML and RSS. The next part of the book looks at using
the mod_perl module to enhance the performance of your programs.

Performance
Enhancement with
mod_perl

P A R T 4

■ ■ ■

Apache and mod_perl

When Perl programs are executed through Apache, they are sent through an Apache module
called mod_cgi. The mod_cgi module works well—very well, in fact—for countless web sites.
However, because of the way in which Perl programs are executed by mod_cgi, using it has some
performance drawbacks.

On the other hand, the Apache module called mod_perl enables higher performance for Perl
programs operating on the web server. It does this by embedding the Perl interpreter directly into
the Apache binary itself. However, far from being merely a performance boost for Perl scripts,
mod_perl gives the developer access to the Apache request object itself which, in turn, means that
entire Apache modules can be written in Perl.

This chapter looks at how Apache handles requests, where mod_cgi and mod_perl fit in,
and finally how to install and configure mod_perl. The Apache 1.3 series will be the basis for
this chapter, since that version is so widely deployed.

How Apache Handles Requests
Chapter 5 gave an overview of the HTTP protocol. Recall that HTTP is a request/response pro-
tocol, where the client, usually a web browser, sends a request to a web server for a resource
on that server. The web server then responds with that resource.

Learning how Apache—by far, the most popular web server out there—handles requests
can be quite helpful for writing advanced web applications. If you have any desire to write an
Apache module in Perl with the help of mod_perl, learning the Apache request model is essential.

■Note It would be somewhat more than an overstep to write a section of a chapter of a book on Perl and
encompass all that is the Apache web server. Here, I briefly touch on a few points regarding how Apache
handles requests and how CGI programs are handled in Apache. For more information about how Apache
works, see Pro Apache, Third Edition, by Peter Wainwright (Apress, 2004).

Apache is a long-running background server process, meaning that once you start it, it
stays around in the background until you stop it. To run this way, Apache must be stable and
not prone to dying unexpectedly. One of the ways that Apache accomplishes this feat is by

183

C H A P T E R 1 0

■ ■ ■

CHAPTER 10 ■ APACHE AND MOD_PERL184

1. The privileged ports are historically those below 1024. These ports work with protocols for well-known
services such as HTTP, SMTP, POP3, HTTPS, and numerous others. The ports can usually be bound
only by the root user. The reason for this is part legacy and part good security. Since those ports serve
well-known protocols, it was felt that the best way to ensure that those ports were running "trusted"
services was to specify that they could be bound only by the system administrator, root. If the port is
below 1024, the client can assume that the service was started by the system administrator and is
therefore not just some random service started by a rogue user (at least, that’s the theory).

creating child processes to actually go off and respond to the requests. This way, if one of the
children encounters something that might cause a crash, Apache can simply kill the child
process and respawn another. In addition, the child processes handle only a certain number
of requests (which you can configure) before they automatically die and a new one is respawned.

When Apache starts, it goes through the initialization process, which includes looking for
and parsing any command-line arguments given, parsing configuration files, and opening its
log files. Apache normally starts as the root user so that it can bind to a privileged port,1 usu-
ally TCP port 80. Once initial configuration is done, Apache starts initializing various modules,
as indicated through its configuration files. Finally, or as finally as one can get with a long-
running process, Apache will begin the process of child initialization.

Apache’s Child Processes
Recall that the final step in the Apache startup process is to spawn or fork one or more child
processes. When a child is spawned, it goes into a wait-service-wait loop, where the child waits
for a request, services the request, and then goes back into a listening state until its next request
is received. Where the main Apache process runs as root, these child processes run as an unpriv-
ileged user and group. Doing so greatly increases the security of the server. If an attacker is able
to break in through Apache itself, he will have the privileges of that user, rather than the privi-
leges of the root account!

■Caution Just because Apache child processes run as an unprivileged user doesn’t mean that the server
is secure. Even if an attacker gains access to the system through this unprivileged user, he might be able to
escalate his privileges through a number of attack vectors.

As a child receives a request, the request falls through a number of Apache procedures
before a response is sent. Some of these procedures provide entry points into the Apache API.
Using the Apache API, a module writer can affect the handling of the request at a much lower
level than merely responding to the request at the CGI level after it has been passed by the
Apache child process. In other words, using the Apache API, a programmer could send special
headers back as part of the response, in a much more efficient way than writing a CGI script to
accomplish the task.

The main processing for Apache requests is handled in the http_request.c source code
file. In this file, a number of procedures are defined, including process_request, which calls
process_request_internal. The process_request_internal procedure contains the heart of
Apache request handling. The Apache handling procedures are described in Table 10-1.

CHAPTER 10 ■ APACHE AND MOD_PERL 185

Table 10-1. Apache Request Procedures

Procedure Description

location_walk Apache looks at the configuration file for any location directives
based on the URI as passed in the request.

translate_name Apache takes the name from the URI and converts it to a name
in relation to the local filesystem. This has nothing to do with
translation between languages, but rather is how Apache converts
a URI to a local file.

directory_walk Now that Apache has converted the URI to a local resource, it
examines the configuration file for any directory directives that
might apply to this particular resource.

file_walk Apache examines the configuration file to find any file directives
that might apply to the requested resource.

location_walk Apache does another round of location walking in the configuration
file to see if the translate_name procedure has changed the location,
thus making the location directive now apply.

header_parse The header of the request is parsed.

check_access A number of authorization checks are done, with check_access
being the first. It checks for access based on the IP of the request.

check_user_id This procedure looks at authorization based on the identity of the
remote user.

check_auth This procedure looks at the username and password pair.

find_types This procedure works with MIME types of the requested resource.
At this stage, Apache chooses the correct content handler for the
requested resource.

run_fixups This procedure is somewhat misnamed. During this phase of the
Apache request/response cycle, the response header is written
and the content may also be sent to the client. This phase can
work in conjunction with the invoke_handler procedure, called
next.

invoke_handler During this phase, if another module is necessary for fulfilling the
request, it is called. This handler may also write the response
header and send the content.

finalize_request_protocol This phase performs some cleanup actions on the request but
shouldn’t be confused with any cleanup for the Apache child
processes.

logging Though not a procedure name, logging may be performed at any
step in the process if an error is encountered or when the request
is processed.

■Note The procedures described in Table 10-1 are used in the Apache 1.3 series, specifically from 1.3.33,
for anyone keeping score at home. The procedures and the handling of requests are largely the same in
Apache 2.

CHAPTER 10 ■ APACHE AND MOD_PERL186

An Apache module, whether written in C or in Perl with the help of mod_perl, can implement
these procedures to work with the Apache requests as they go through their various stages. For
example, you might write a custom module for authentication, for logging, and so on. You’ll see
how to do this in Chapter 11.

Forking
Apache works by forking child processes that go off and handle the actual requests from clients.
The Apache configuration file controls how these children work, including the number of child
processes to fork, the number to keep around, and how long they should be kept around. Some
Apache configuration directives are important in this regard. The following are some of those
configuration directives:

• maxrequestsperchild: This directive sets the number of requests that a given child will
handle before dying and being replaced by another child. If the web server is serving
buggy and/or poorly written programs that have problems like memory leaks, adjusting
this value (setting it lower) will help to control that memory leak. However, the trade-off
is that Apache will need to spawn another child process each time one dies (in accordance
with minspareservers). The spawning of new child processes is not without overhead of its
own. In practice, you don’t want to set the maxrequestsperchild value so low that Apache
needs to fire up replacement child processes during busy times. The true solution is to fix
whatever buggy and leaky programs are causing Apache to use extra memory during
a child’s lifetime.

• maxclients: This directive sets the limit for the number of requests that can be serviced
at any given time. By default, Apache sets a hard limit on this directive, making the maxi-
mum value 256. You can increase this setting by changing the value in the httpd.h header
file and recompiling Apache. This directive is key for surviving a heavy load spike.

• listenbacklog: This directive sets the length of the queue for pending requests. The
default for this, 511, is normally high enough.

• minspareservers: This directive is used to configure the minimum number of idle chil-
dren to have awaiting a request. Keeping a child server around will prevent Apache from
needing to spawn another child process if all the children are busy. The default is 5.

• maxspareservers: This directive is used to set the maximum number of child processes
to have awaiting a request. The parent process will kill off idle child processes to pre-
serve system resources. The default is 10.

• startservers: This directive sets the number of child processes to spawn when starting
Apache. The default is 5. Setting this value too high will cause a slowdown in the Apache
startup process.

■Caution Keep in mind that the configuration parameters described here directly affect the performance
of the Apache server. Setting these too low or too high can result in significantly decreased performance. I’m
reluctant to give recommendations for these settings, since a large number of factors are involved in deter-
mining the optimum settings.

CHAPTER 10 ■ APACHE AND MOD_PERL 187

SURVIVING THE SLASHDOT EFFECT

The Slashdot web site (http://www.slashdot.org) is an extremely popular web site for technology news.
Stories are submitted by the public, and the Slashdot moderators post selected stories on the public web site.
The stories frequently contain links to other web sites. The load generated by the large spike in traffic fre-
quently causes those sites to become nonresponsive or start spewing errors. The power of Slashdot to shine
its spotlight onto a site and then watching that site go down has come to be known as the “Slashdot effect."

I’ve been the lucky recipient of the Slashdot effect through blog entries on my site. However, contrary
to the experiences of other sites, I was happy to see that my configuration survived and, in fact, thrived on
the extra attention. The server hardware isn’t high-end; in fact, it is just a Pentium Celeron server with only
512MB RAM and a single 40GB IDE hard drive. The server also handles SMTP e-mail and DNS for a few
domains. Even with the smaller resources being shared among multiple services, the server worked well.
The reason that the server did so well was the operating system and web server choices.

The server is Debian with Apache 1.3. Inside the configuration, I changed one directive from its default,
maxclients. The Debian maintainers chose good defaults for the rest of the settings, thus making the job of
handling a large volume much easier. I set maxclients to 450, which is still below the Debian maximum of
512 (many vendors set this hard limit at 256).

If you find yourself with an increased web server load, you don’t need to run out and get more hard-
ware, buy expensive load-balancing devices, and make other costly changes. Look at the server you have
and the configuration on it. Increasing maxclients is an easy and effective way to handle the increased
load. You might also consider adjusting the minspareservers and listenbacklog directives, though
I didn’t need to adjust those for my server.

You’ve now seen a glimpse into how Apache handles requests and some of the directives
available to configure Apache. A CGI program is a special type of content and is handled
through an Apache module. The next section examines CGI program handling through
mod_cgi and mod_perl.

mod_cgi vs. mod_perl
By default, the mod_cgi module is used to handle CGI content in Apache. The MIME type of the
file, as well as its location, define whether or not mod_cgi will be invoked to handle the request.
The location must fall within a directory defined as ScriptAlias. The scripts written so far in
this book were written to run with mod_cgi.

When mod_cgi executes a CGI script, Apache forks a new process containing the interpreter
for the CGI program. Since this is a book on Perl, it means that the Perl interpreter is loaded each
time a CGI program is executed. The CGI program itself is compiled on each execution as well.
Any database connections and other necessities are also created for each execution. Naturally,
this forking, loading the interpreter, and compiling the program have a cost. On busy systems,
the resource cost of running a CGI program can make the application unacceptably slow.

Where mod_cgi must load the Perl interpreter with each invocation of the CGI script,
mod_perl embeds the Perl interpreter directly into the Apache child process. This means that
the Perl interpreter is loaded only once for each child process, rather than once for each exe-
cution of the CGI program. mod_perl uses a couple of methods to execute Perl scripts. One of
these methods compiles the program only once, when it is first used. The result is that the CGI
program runs much, much faster—sometimes up to 100 times faster.

CHAPTER 10 ■ APACHE AND MOD_PERL188

■Note Don’t let my emphasis on mod_perl make you think that it is the only way to speed up execu-
tion of a CGI script with Apache. Far from it. mod_perl is just one method for speeding up execution of
CGI programs. Another method is by using the FastCGI module. To find out more about FastCGI, visit
http://www.fastcgi.com/.

Benefits of mod_perl
The obvious first benefit gained with mod_perl is faster execution of CGI scripts written in Perl.
Since the Perl interpreter is loaded into the Apache child process, a new process doesn’t need
to be spawned for each execution.

In addition to the benefit of faster execution times for CGI programs, mod_perl also enables
developers to write Apache modules entirely in Perl, as opposed to the more traditional C lan-
guage for Apache modules. This essentially means that you can access any part of the Apache
request-handling process and write your own handler for it using Perl. The “Beyond CGI Pro-
gramming with mod_perl” section, coming up soon, provides more details on using mod_perl
this way.

Another benefit of mod_perl is configuration access. Using mod_perl, you can configure the
Apache server itself, in essence creating dynamic configuration files. Other Apache modules, such
as mod_vhost_alias, perform this same function, but it is available through mod_perl as well.

Drawbacks of mod_perl
With all of the benefits of mod_perl, one might wonder why Apache isn’t using mod_perl as its
default handler for CGI programs. I’ll examine the reasons in this section, as well as some
other drawbacks to mod_perl. None of this discussion is meant to deter you from working
with mod_perl or using it as much as possible. However, you should be aware of these issues.

Obviously, when the Perl interpreter gets embedded into each Apache child process, the
Apache process itself is much larger. This means that each child will have a larger memory
footprint than it would without mod_perl. This has real ramifications on busy servers or those
with small amounts of spare resources. Using mod_perl, you may find that adjustments need
to be made to the startservers configuration directive or the minspareservers configuration
directive to account for the additional resource load imposed by mod_perl.

Programs compiled only once share the same global variables. For some CGI scripts,
this creates a problem. Since the global variables aren’t reinitialized, they may hold
unknown values, which are then used again within the program. This means that many
such programs need to be rewritten to work with mod_perl. However, to mitigate this, two
mod_perl packages—Apache::Registry and Apache::PerlRun—execute the scripts in fun-
damentally different ways, as described shortly.

Beyond CGI Programming with mod_perl
mod_perl is much more than merely another way to execute CGI programs. Using mod_perl,
you can access any portion of the Apache request process. This is accomplished through a series
of handlers. Here are just a few of the things that you can do with a mod_perl handler:

CHAPTER 10 ■ APACHE AND MOD_PERL 189

• Perform authentication

• Create content

• Parse configuration files

• Read request headers

• Set response headers

• Work with MIME types

• Perform logging

Handlers for other areas can be used as well. This is all accomplished through the mod_perl
API, which exposes a number of subroutines, some of which include the following:

• PerlAuthenHandler

• PerlAuthzHandler

• PerlHandler

• PerlPostReadRequestHandler

• PerlHeaderParserHandler

• PerlTransHandler

• PerlTypeHandler

• PerlLogHandler

Again, these are just a few of the possibilities with a handler coded through the mod_perl API.
The Apache request header is important to understanding some of the functionality available
with mod_perl. The Apache request object is used by mod_perl to enable access to the request.
Chapter 11 will detail many of these interfaces. For now, the point is that mod_perl means much
more than enhancing the performance of CGI programs.

Apache::Registry vs. Apache::PerlRun
You can use two packages within mod_perl to execute scripts:

• Apache::Registry maintains persistence between runs of the script by caching the script.
The first time the script is accessed, the variables are initialized, and filehandles and data-
base handles are created. If the script doesn’t properly reinitialize the variables and close
file and database handles, chaos can ensue.

• Apache::PerlRun, on the other hand, compiles the program at each request, which nat-
urally means that variables and other objects in the namespace are cleared at each run.

Since the programs and all of the modules they use are loaded only once, Apache::Registry
is the better performer of the two. However, Apache::PerlRun can be used to quickly port existing
or misbehaving scripts over to mod_perl. While the performance gain isn’t as great with
Apache::PerlRun, there is still some benefit, since the Perl interpreter is embedded in the Apache

CHAPTER 10 ■ APACHE AND MOD_PERL190

Figure 10-1. Submitting a form that uses a CGI built for mod_cgi

process. Note that if a script is modified, Apache::Registry will recompile the script; Apache
doesn’t need to be restarted in order for the change to be picked up.

To demonstrate how namespace pollution can be important when you run scripts under
Apache::Registry, consider this example:

use CGI;
$query = CGI->new();

if ($required_name) {
print header;
print "name is $required_name\n";
#do something else

}
else {

$required_name = $query->param("name");
#die
}

With mod_cgi, since the script is initialized every time, the variable $required_name will
always start out undefined. However, with mod_perl’s Apache::Registry, once $required_name
is defined, it won’t be undefined or reinitialized, and therefore will always execute the code
within the conditional. Code such as this might be found in a CGI program that carries values
forward from page to page, such as a shopping cart or other wizard-style CGI program.

Let’s see what happens with this CGI script. On the first run, I input my name, as shown in
Figure 10-1, and then click Submit Query.

CHAPTER 10 ■ APACHE AND MOD_PERL 191

Figure 10-2. All appears normal, as shown by this output.

The output from this first run is shown in Figure 10-2. Everything looks okay.

Figure 10-3 shows another run of the program, this time with a different name as input.

Figure 10-3. Submitting the same form again, this time with a different name

Figure 10-4. The name originally used for input still shows up in the output with this program
under mod_perl.

CHAPTER 10 ■ APACHE AND MOD_PERL192

After clicking Submit Query, the name originally submitted, Steve, still shows up in the
output page, as shown in Figure 10-4.

Obviously, something is wrong with this script when run with Apache::Registry under
mod_perl. This code would run fine, however, with Apache::PerlRun.

Even though the code would work with Apache::PerlRun, the better solution would be to
fix the code so that variables are reinitialized on each execution of the script. The scripts would
then run under Apache::Registry. For example, the code example previously given can be fixed
as follows:

use strict;
use CGI;
my $query = CGI->new();
my $required_name;

if ($required_name) {
print header;
print "name is $required_name\n";
#do something else

}
else {

my $required_name = $query->param("name");
print "name is $required_name\n";

}

CHAPTER 10 ■ APACHE AND MOD_PERL 193

2. I suppose you could also download the source for the distribution’s package, make changes, and
recompile that version, but I’ll leave that as an exercise for the reader.

Another way to fix it is like this:

use strict;
use CGI;
use vars qw($query $required_name);

$query = CGI->new();
$required_name = $query->param("name");

if ($required_name) {
print header;
print "name is $required_name\n";
#do something

}
else {

#die
}

Now that you have some idea of the advantages of mod_perl and its packages for executing
scripts, you’re ready to start working with it. The first step is installing the module.

mod_perl Installation
mod_perl is included as a package with many distributions of Linux. For many installations, the
stock version from the distributions package will work fine. In some distributions, mod_perl is
actually installed with the default web server, although it might need to be activated.

■Note The information for packaged installation changes quite rapidly. It could be the case that by the
time you’re reading this, mod_perl will be automatically installed and activated on your distribution. Check
the documentation for your distribution to find out exactly how to install and activate mod_perl, if necessary.

If your distribution’s packages don’t provide the functionality that you need, the only
other option is to compile from source.2 This section looks at how to perform a basic com-
pile of Apache with mod_perl. This section assumes that you do not currently have Apache
installed, or if you do, that it will be removed before installing mod_perl. If you have existing
configuration files for Apache, be sure to save those to a safe location, so that they aren’t
overwritten by the source install.

Getting the Code
Before you can compile the code, you need to get the code (that nugget of information alone
made the entire book worthwhile for the reader, I’m sure). The code for mod_perl also requires
the source code for Apache, so that the Perl interpreter can be embedded into Apache.

CHAPTER 10 ■ APACHE AND MOD_PERL194

You can download mod_perl’s source code from http://perl.apache.org/, and you can
get the source code for the Apache web server from http://httpd.apache.org/. Download the
latest mod_perl in the 1.0 series and the latest Apache in the 1.3 series. Although the Apache 2.0
and mod_perl 2.0 series are available, the 1.N branch of each of these applications is much more
widely deployed in production environments. Over the next three to five years, this situation
will likely change, as is inevitable in the world of software.

Unpacking the Code
In these examples, I’ve downloaded the source code to my home directory, /home/
suehring. Within that directory are the two tarred files containing the source code:
mod_perl-1.0-current.tar.gz and apache_1.N.NN.tar.gz.

Unpack the Apache source:

tar -zxvf apache_1.3.33.tar.gz

Unpack the mod_perl source:

tar -zxvf mod_perl-1.0-current.tar.gz

Looking for Prerequisites
Building Apache and mod_perl requires some supporting software to be available. Most sys-
tems will have this software already loaded. However, if you haven’t compiled software on the
system before and no other software has been built as part of an installation, there’s a chance
that one or more of these prerequisites might not be installed.

Every Linux distribution I’ve ever used has the software available through the normal
package-management tools. Therefore, if you find that you’re missing a prerequisite, consult
your distribution’s documentation for installation of that prerequisite. It will likely be an easy
process, since the prerequisites for building mod_perl are quite common.

The following three commands are recommended by the mod_perl documentation to
determine the status of the prerequisites:

make -v
gcc -v
perl -v

I would hope by this point in the book that the Perl command will be successful! If any of
these return something like Command not found, you’ll need to install the prerequisite before
proceeding.

Building and Installing mod_perl
Compiling Apache customized for a particular installation is a complex process. Locations for files,
static linking, which modules to install, and other considerations make Apache one of the more
complicated configurations of all Linux software. It would be quite difficult to select a certain set or
subset of options to satisfy every need. The Apache documentation (http://httpd.apache.org/) is
a good starting point for those wishing to learn about Apache’s configuration options. In addition,
the INSTALL documentation that comes with the Apache source is another great resource. For the
purposes of this chapter, I’m going to show you how to build Apache with mod_perl with all options
enabled.

CHAPTER 10 ■ APACHE AND MOD_PERL 195

■Note Best practice system administration says, and I agree, that enabling all options is a bad idea on pro-
duction systems. More applications and options mean a greater footprint in terms of both resources and
security. The difference in resources between everything and a minimum set of functions isn’t incredibly
large with Apache and mod_perl, especially with modern hardware. However, more code almost always
means more chances for bugs that could crop up at the most inopportune time. From a security stand-
point, if something doesn’t exist, it can’t be exploited. When everything is compiled in, a security exploit
for a piece of the code would make the program vulnerable. For these reasons, I recommend spending
time learning exactly which Apache modules you need and disabling those you don’t need.

With both the Apache and mod_perl sources unzipped, change into the mod_perl source
directory:

cd mod_perl-1.NN

For example, to change into the mod_perl directory for version 1.29, this command would
get you there:

cd mod_perl-1.29

mod_perl uses Perl to create the Makefile and uses some command-line arguments and
switches to configure the compile process. Chief among those command-line arguments is
the location of the Apache source code. Since you unpacked the Apache source to the direc-
tory one level up from the mod_perl source directory, however, mod_perl will be able to find it.

From within the mod_perl source directory, type the following:

perl Makefile.PL EVERYTHING=1 USE_APACI=1

The Makefile.pl script will now run. Pay particular attention to any warnings and follow
their instructions. Here is an example:

************* WARNING *************

Your Perl is configured to link against libgdbm,
but libgdbm.so was not found.
You could just symlink it to /usr/lib/libgdbm.so.1.7.3

************* WARNING *************

The script will ask a couple questions about how to build the software:

Will configure via APACI
Configure mod_perl with ../apache_1.3.33/src ? [y]
Shall I build httpd in ../apache_1.3.33/src for you? [y]

The script will create a Makefile checking for other prerequisites such as the Perl develop-
ment files. If you installed Perl as a package with your distribution (this is usually the case),
you might need to install the Perl development package as well. I recommend installing this
package from your distribution, rather than downloading a new version of Perl and compiling
it from source.

CHAPTER 10 ■ APACHE AND MOD_PERL196

When the script is finished running, you’ll see lines like the following towards the end of
the output:

Writing Makefile for Apache::Table
Writing Makefile for Apache::URI
Writing Makefile for Apache::Util
Writing Makefile for mod_perl

Unfortunately, this doesn’t guarantee that everything went well. There could be an error
hidden in the output. Scrolling back through the output might help you locate any problems.
Sometimes, the process will stop entirely, as shown here:

======== Error Output for sanity check ========
cd ..; cc -DLINUX=22 -DHAVE_SET_DUMPABLE -DMOD_PERL -DUSE_PERL_SSI
-D_REENTRANT -DTHREADS_HAVE_PIDS -DDEBIAN -fno-strict-aliasing
-I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
-DUSE_HSREGEX -DNO_DL_NEEDED -D_REENTRANT -DTHREADS_HAVE_PIDS -DDEBIAN
-fno-strict-aliasing -I/usr/local/include -D_LARGEFILE_SOURCE
-D_FILE_OFFSET_BITS=64 `./apaci` -I. -I/usr/lib/perl/5.8/CORE -o
helpers/dummy helpers/dummy.c -lm -lcrypt -Wl,-E -L/usr/local/lib
/usr/lib/perl/5.8/auto/DynaLoader/DynaLoader.a
-L/usr/lib/perl/5.8/CORE -lperl -ldl -lm -lpthread -lc -lcrypt
/usr/bin/ld: cannot find -lperl
collect2: ld returned 1 exit status
make: *** [dummy] Error 1
============= End of Error Report =============

Aborting!

Examining the output shown in the example reveals that I didn’t have the Perl development
libraries installed on the newly installed Debian Sarge computer. This is specifically shown in the
following output:

/usr/bin/ld: cannot find -lperl

After installing the Perl development libraries (included with most distributions), I can
restart the build.

Once the Makefile.pl script runs successfully, type the following:

make

The software will now be compiled. When that’s complete, test the build by typing this:

make test

You might be tempted to skip this testing step, but I don’t recommend doing so. The tests
don’t take terribly long, and if they’re successful, you’ll know that the compile isn’t the problem
if something goes wrong when you attempt to start Apache with mod_perl. When the test script
is completed, you’ll see output similar to this:

CHAPTER 10 ■ APACHE AND MOD_PERL 197

All tests successful, 6 tests skipped.
Files=34, Tests=402, 7 wallclock secs (5.14 cusr + 0.74 csys = 5.88 CPU)
kill `cat t/logs/httpd.pid`
rm -f t/logs/httpd.pid
rm -f t/logs/error_log

To install mod_perl, use the su - command to switch to the root user, and then type the
following:

make install

This will install the mod_perl software, but you still need to install Apache. Do this by chang-
ing to the Apache source directory. If you’ve followed these instructions so far, the Apache source
is in the directory just above the mod_perl source directory. From within the mod_perl source code
directory, enter this command:

cd ../apache-<version>

Now, install the software by typing this:

make install

The last few lines of the Apache install output will show where the configuration file is
located, as well as information about the apachectl script:

+--+
| You now have successfully built and installed the |
| Apache 1.3 HTTP server. To verify that Apache actually |
| works correctly you now should first check the |
| (initially created or preserved) configuration files |
| |
| /usr/local/apache/conf/httpd.conf |
| |
| and then you should be able to immediately fire up |
| Apache the first time by running: |
| |
| /usr/local/apache/bin/apachectl start |
| |
| Thanks for using Apache. The Apache Group |
| http://www.apache.org/ |
+--+

You can now start Apache with the following command:

/usr/local/apache/bin/apachectl start

Point your web browser to the IP address of the server, paying particular attention to the
port, as it might have been set to 8080 by default.

You should also see a line such as the following in /usr/local/apache/logs/error_log:

[Tue Jun 14 20:09:23 2005] [notice] Apache/1.3.33 (Unix) mod_perl/1.29 configured
-- resuming normal operations

If Apache doesn’t start, examine that Apache error log for more information.

CHAPTER 10 ■ APACHE AND MOD_PERL198

Choosing Compile Options
When you’re installing mod_perl from source, configuration options abound. This section looks
at some of the configuration options for mod_perl and Apache.

Since mod_perl causes the Perl interpreter to be compiled into the Apache binary, the Apache
binary must be recompiled. Anyone who has ever compiled Apache knows that there are seemingly
endless compile-time options for configuring Apache. One such option is the Apache Autoconf
Interface (APACI), which makes the configuration easier because it enables you to change Apache
compile-time options without needing to edit source configuration files.

Another popular option for Apache is Dynamic Shared Object (DSO) support. DSO sup-
port enables Apache modules to be loaded dynamically, rather than compiled into the Apache
binary. Finally, Apache Extension (APXS) support enables development of modules outside the
Apache source directory. This can add greater flexibility, especially for module development.

Recall the options that were passed to the Makefile.pl script:

perl Makefile.PL EVERYTHING=1 USE_APACI=1

As you can see from those options, the APACI option was indeed enabled, as was an
option called EVERYTHING, which was specified within the earlier instructions for building
and installing mod_perl.

An option that didn’t need to be explicitly defined was the one to locate the Apache source
code tree. By default, the Makefile.pl script looks in the directory above its current directory
for an Apache source code tree. Since the Apache source was unzipped to the parent directory,
the Makefile was able to find it. However, if you need to specify the location for the Apache
source, you can do that with the APACHE_SRC option:

APACHE_SRC=/home/suehring/apache-1.3/src

Other options include DO_HTTPD, which causes the source path specified to be the only path
used, and PREP_HTTPD, which causes the Apache source to be prepared but not built. This means
that you must manually go into the Apache source tree and run make and make install to build
and install Apache, as you did in the preceding instructions to build mod_perl and Apache.

The APACHE_PREFIX option is another important compile-time option. Using APACHE_PREFIX,
you set the location for the Apache binaries and related items to be installed once they are built.

If you wish to build Apache with SSL support, use the SSL_BASE option. The SSL_BASE option
points Apache to the include and lib directories of the SSL installation.

Numerous other options are available at compile-time for mod_perl. See the INSTALL doc-
ument included with mod_perl for the most current list and documentation on these options.

Configuring for mod_perl
Even though Apache is running, you need to do some configuration before mod_perl will work.
At this point, the Apache server is capable of serving static pages and not much else.

The Apache configuration file for the installation that you just completed is located in
/usr/local/apache/conf/ and is called httpd.conf. (Usually, a few other configuration files are
also located in that directory, but is the important one for this section.) Modify the httpd.conf
file to work with mod_perl. For example, if you had a directory of scripts to be served by mod_perl
located in /home/suehring/perl/, you would place the following lines at the end of the Apache
configuration file:

CHAPTER 10 ■ APACHE AND MOD_PERL 199

Alias /perl/ /home/suehring/perl/
PerlModule Apache::Registry
<Location /perl/>

SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGI
PerlSendHeader On
Allow from all

</Location>

These options are very basic and will set up an environment where you can begin to code
with mod_perl.

From mod_cgi to mod_perl
Recall what you’ve learned already in this book. CGI programs written in Perl normally use the
mod_cgi Apache module to be interpreted and served through a web server. Developing a basic
CGI program to be served through mod_cgi might look like this:

#!/usr/bin/perl

use CGI qw/:standard/;
use strict;

my $cgi = new CGI;

print header;
print start_html(-title => 'Basic Program');
print "Hello World";

print end_html;

exit;

This simple program, written as it is, doesn’t require any modification to run with
mod_perl. Moving the program to a directory configured to execute mod_perl programs,
such as /home/suehring/perl/ in the example, will enable it to run through mod_perl. With
a program of this size, however, you probably won’t notice the benefits of mod_perl.

However, when porting already written Perl programs from mod_cgi to mod_perl, you
may sometimes find that those programs won’t behave as expected, or maybe they won’t
work at all. In such cases, the best option is to fix the program itself, rather than implement
a workaround at the server level. Using the strict pragma will go a long way toward ensur-
ing that a program will run under mod_perl’s Apache::Registry. If a program runs with use
strict enabled, chances are good that it will run correctly in mod_perl.

For times when a program absolutely won’t run with Apache::Registry, you can
enable Apache::PerlRun instead of Apache::Registry. As noted earlier in this chapter,
Apache::PerlRun does not cache scripts as Apache::Registry does. Programs are executed

CHAPTER 10 ■ APACHE AND MOD_PERL200

every time they are run. As such, namespaces are cleared with every run, thus resolving
many of the problems that cause the programs to run incorrectly under Apache::Registry.
Obviously, since the programs are not cached under Apache::PerlRun, the performance is
not as good as it is with Apache::Registry.

Modifying the Apache configuration for Apache::PerlRun is easy. Only two lines need to
be changed, namely the lines that refer to Apache::Registry:

Alias /perl/ /home/suehring/perl/
PerlModule Apache::PerlRun
<Location /perl/>

SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCGI
PerlSendHeader On
Allow from all

</Location>

Security Considerations with mod_perl
mod_perl introduces a certain set of security issues into the mix of securing a web server. When
using mod_perl, the namespaces are shared within Apache’s memory. It is possible for attackers
to gain access to areas of the memory that they shouldn’t be able to reach. This is especially
the case on shared hosting servers.

Securing Apache is an expansive subject area best left to a book on Apache. If you’re running
a web server, I do recommend running it within a chroot environment to limit the damage from
a successful attack. (For more information about chroot, see http://www.braingia.org/projects/.)

Summary
This chapter introduced the mod_perl Apache module. mod_perl enables high-performance exe-
cution of Perl programs in Apache and is meant to replace the normal mod_cgi Apache module
for executing Perl programs and CGI scripts. mod_perl gains access to the entire Apache request
object and can therefore be used for much more than just executing CGI programs. For example,
mod_perl enables the developer to write Apache modules in Perl rather than in the traditional C
language.

This chapter began with a look at how Apache handles requests and continued into the
installation and configuration of mod_perl. The next chapter covers development in mod_perl.

201

C H A P T E R 1 1

■ ■ ■

Development with mod_perl

The previous chapter showed how to install mod_perl with Apache in order to achieve better
performance from web applications created in Perl. Recall that mod_perl embeds the Perl
interpreter into the Apache process, thus making the execution of Perl programs much faster
than when you use the normal mod_cgi module. But mod_perl is much more than a way to get
CGI programs to run faster. mod_perl also enables programs to access many parts of the request/
response cycle and manipulate those in order to not only increase performance, but funda-
mentally change the way that the server itself operates.

In this chapter, you’ll learn how to build programs that run under mod_perl and take
advantage of its features. As this book was wrapping up, mod_perl version 2.0 was officially
released. As with the choice to cover the Apache 1.3 series, I chose to cover the mod_perl 1.0
series due to the sheer number of mod_perl 1.0 series installations available today.

Thinking in mod_perl
Ideally, every CGI script that you’ve already written will work “out of the box” with mod_perl. If
you’ve incorporated the use strict pragma throughout your CGI programs, then you’re a good
way toward having them work in mod_perl. However, in practice, it’s rare to have complex pro-
grams written for mod_cgi work in mod_perl without at least some debugging. This section begins
with a look at some initial considerations for converting programs from mod_cgi to mod_perl, fol-
lowed by a more detailed look at the Apache::Registry and Apache::PerlRun modules.

■Note In the world of mod_perl version 2.0, Apache::Registry has been renamed to Modperl::Registry.

Initial Considerations
Recall from Chapter 10 that mod_perl can be used to create handlers for any phase during the
Apache request process. The actual serving of the content—what you might consider the web
page—is done during this process. During the request process, one of the handlers, PerlHandler,
is invoked. Through PerlHandler, you specify exactly how you would like mod_perl to serve the
content.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL202

Recall also that there are two Perl modules primarily used for PerlHandler: Apache::Registry
and Apache::PerlRun. Apache::Registry is the better performing of the two modules.
Apache::PerlRun is the module most often used during the transition phase between mod_cgi-
based programs and mod_perl-based programs.

Warnings and Taint Checking
It’s common to use the -w option to enable warnings for Perl programs, as well as to enable
taint checking with -T. This is usually accomplished on the shebang line, like this:

#!/usr/bin/perl -wT

However, many programs written for mod_perl don’t use a shebang line. Therefore, there
are two directives to enable warnings and taint mode. These are placed in the Apache configu-
ration file should you choose to use them:

PerlWarn On
PerlTaintCheck On

Variable Scoping and Environment Variables
Think locally and not globally when coding for mod_perl. Global variables inevitably lead to
unpredictable results when executing programs through mod_perl. If you have not thought
about and coded for variable scoping, there’s a chance that your programs won’t work cor-
rectly every time when executing through a mod_perl server.

Environment variables, such as those found in %ENV and used by many CGI programs,
are sent by default with mod_perl. In some cases, you might want to turn off this behavior.
Use PerlSetupEnv within your Apache configuration file to disable this:

PerlSetupEnv Off

You can also set specific environment variables using PerlSetEnv. For example, if you
have a CGI program that relies on an environment variable to be set, place the correct direc-
tive in the Apache configuration file:

PerlSetEnv DATASOURCE /home/suehring/customers

If the Apache process itself already has an environment variable that you merely want to
take advantage of, use the PerlPassEnv directive in your Apache configuration file. For exam-
ple, assume that the httpd parent process has an environment variable of DATASOURCE already
set. You could access that variable with this statement:

PerlPassEnv DATASOURCE

Apache::Registry vs. Apache::PerlRun, Revisited
Remember the example in Chapter 10 that showed a script that didn’t clean up its namespace
very well. The broken version of that script is shown here again, so you don’t have to flip back
to refresh your memory:

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 203

Figure 11-1. The sample script run under Apache::PerlRun

use CGI;
$query = CGI->new();

if ($required_name) {
print header;
print "name is $required_name\n";
#do something else

}
else {

$required_name = $query->param("name");
}

Under Apache::Registry, the better performing of the two modules, the variable
$required_name wouldn’t be null except on the very first execution of the program. On sub-
sequent executions, that variable, having already been assigned a value, would always be
set and thus would never get a new value. If you modified the program, Apache::Registry
would indeed notice the change though.

Using Apache::PerlRun, namespaces are flushed after each run of the program, thus assisting
in the transition from mod_cgi to mod_perl. This means that variables such as $required_name that
aren’t properly initialized are cleared, just as they would be under mod_cgi. Figure 11-1 shows the
same script now run under mod_perl with Apache::PerlRun.

Figure 11-3 shows what happens when the program is run a second time, this time using
the name Test2.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL204

Figure 11-2. The name Test1 is used for the first run of the program.

Figure 11-3. The name Test2 is used for the next run of the program.

When submitted, the program works as expected, as illustrated in Figure 11-2.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 205

When submitted, you can see from Figure 11-4 that the name is now Test2, indicating
that the namespace was cleared as expected by Apache::PerlRun.

Missing from the example shown in this section is the use strict pragma. Had use strict
been used for the sample script, an error would have been raised, because $required_name wasn’t
declared prior to its first use.

Although the example shown here seems contrived, in reality, it’s all too common, espe-
cially with legacy CGI programs.

Apache::PerlRun
Using Apache::PerlRun should be considered to be a quick-and-dirty workaround or hack into
the world of mod_perl. It shouldn’t be considered the end solution for running a CGI program
with mod_perl. Rather, Apache::PerlRun should be an interim approach while the program is
revised to clean up its namespaces.

Enabling Apache::PerlRun is a matter of setting the PerlHandler to Apache::PerlRun within
the Apache configuration file. Replace the following:

PerlHandler Apache::Registry

with this:

PerlHandler Apache::PerlRun

Another area where namespace pollution shows up is with shared CGI programs and
older common library files. If your program uses an older library, there is a chance that it
won’t properly initialize its namespace. When this happens, your first option will likely be
to invoke Apache::PerlRun.

Figure 11-4. The correct name is used by the program on the second run.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL206

PerlRunOnce
Sometimes, even Apache::PerlRun by itself won’t fix the problems. In such instances, you can
also invoke PerlRunOnce option. With PerlRunOnce enabled, the process responsible for execut-
ing the Perl program is spawned only for the lifetime of that execution and dies thereafter. If
you believe that this would cause nontrivial performance degradation, you are correct.

You set the PerlRunOnce option from within the Apache configuration, specifically within
the mod_perl section. Recall the sample configuration for Apache and mod_perl from Chapter 10,
now modified to use Apache::PerlRun:

<Location /perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options +ExecCGI
PerlSendHeader On
Allow from all

</Location>

To enable PerlRunOnce, you use the PerlSetVar option:

PerlSetVar PerlRunOnce On

The configuration now looks like this:

<Location /perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
PerlSetVar PerlRunOnce On
Options +ExecCGI
PerlSendHeader On
Allow from all

</Location>

Apache::Registry
Apache::Registry is the better performing module of the two modules discussed here for
serving content through PerlHandler configuration directive. Examples shown throughout the
remainder of this chapter will assume the use of Apache::Registry.

Each program executed through Apache::Registry is done so by each Apache child,
which compiles the program only once. This initial compile may result in the very first load
of a program taking incrementally longer before the subsequent runs take advantage of that
precompile.

The Apache configuration to mod_perl with Apache::Registry is typically as follows
(replace /home/suehring/perl with the appropriate location for your installation):

Alias /perl/ /home/suehring/perl/
<Location /perl/>

SetHandler perl-script
PerlHandler Apache::Registry

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 207

Options +ExecCGI
PerlSendHeader On
Allow from all

</Location>

Preloading Perl Modules
Another area for optimization using mod_perl is to preload Perl modules, rather than loading
them with each program. For example, the CGI module or the DBI module could be loaded by
Apache, thus giving even better performance for programs that use those modules.

Preloading Apache::DBI
As you learned in Chapter 3, the DBI provides database access through Perl. You can preload
the DBI, and even the database-dependent bits through the DBD, to enhance performance.
However, in the case of the DBI, you employ another method for initialization, using a special-
ized module called Apache::DBI. You load this module by using the following line in the
Apache configuration file:

PerlModule Apache::DBI

With that line in the Apache configuration file, the Apache::DBI module will be preloaded
and will overload the DBI namespace, enabling your programs to forego the use DBI pragma
and also providing just that much more speed to the program.

Resurrecting an example from Chapter 3, Listing 11-1 (Newdb.cgi) shows that the same code
can be used, but notice that the use DBI pragma is now missing from the program.

Listing 11-1. Preloading the DBI

use strict;
use CGI qw/:standard/;

my $username = "dbuser";
my $password = "dbpass";
my $dsn = "dbi:mysql:mysql:192.168.1.10";
my $dbh = DBI->connect($dsn,$username,$password)
or die "Cannot connect to database: $DBI::errstr";

my $sth = $dbh->prepare("SELECT host,user FROM mysql.user");

$sth->execute()
or die "Cannot execute sth: $DBI::errstr";

print header,
start_html('MySQL Hosts and Users'),

table({-border=>1}),
Tr({-align=>'CENTER',-valign=>'TOP'},

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL208

[
th(['User','Host'])

]);

while (my ($hostname,$username) = $sth->fetchrow_array()) {
if ($username eq "") {

$username = "undef";
}
print Tr({-align=>'CENTER',-valign=>'TOP'},

[td(["$hostname","$username"])
]);

}

print end_html;

$dbh->disconnect();

As before, the code results in an HTML table, as shown in Figure 11-5.

For more information about Apache::DBI, including some caveats on its use, see perldoc
Apache::DBI.

Figure 11-5. Code to enumerate MySQL hosts and users run through Apache::DBI

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 209

Preloading Other Modules and Methods
You can also preload other modules and preload your own handlers from within the Apache
httpd.conf configuration file. It’s also common on dedicated mod_perl servers (as opposed to
shared servers) to create a separate file with the use() statements and other handlers and
modules. For example, you might create a file called mod_perlenv.pl containing the following:

#!/usr/bin/perl

use Apache::DBI;
use Apache::Registry;
use My::Package;

1;

You could then include this file from the httpd.conf configuration file with the PerlRequire
directive:

PerlRequire mod_perlenv.pl

Although this type of configuration isn’t required, it’s a small thing you can do to try to eke
out that much more performance from mod_perl.

Working with the Apache Request Object
As you learned in Chapter 10, central to programming in mod_perl is the Apache request object.
The Apache request object gives you access to the various portions of the request/response
lifecycle.

■Note See the src/include/httpd.h file included with the Apache source code for more information
about the request/response lifecycle.

You access the Apache request object through the request() method of the Apache::Request
class. The Apache::Request class, and many of the classes used throughout this chapter, are found
in the libapreq module available on CPAN.

You’ll commonly see Apache::Request referred to as $r in documentation, and I see no
reason to change that convention here. Instantiation of the request object is commonly done
like this:

my $r = Apache->request();

As stated previously, the request object is central to programming with mod_perl. Therefore,
the request object is the first argument passed into mod_perl handlers. This, in turn, makes it
possible to also grab the object off the stack:

my $r = shift;

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL210

You can use the Apache request object to retrieve, inspect, and modify request and
response headers. These headers are defined by the HTTP standard, which is codified in RFC
2616 (see http://www.rfc-editor.org/).

You can both retrieve incoming headers (the request) and set outgoing headers (the response).
Setting a response header is required for CGI programming and is usually done by the CGI module
or by a simple print statement. Remember from way back in Chapter 1, where one of the first CGI
examples shown sent a Content-Typeheader as the first line of output:

print "Content-Type: text/html\n\n";

The Apache request object has a method for accomplishing this same task:

my $r = shift;
$r->send_http_header('text/html');

Of course, you can send this header with the CGI module, too:

use CGI qw/:standard/;
print header;

Note that you can use another method, content_type(), to set the Content-Type within
the Apache response, as well as set other response headers with the Apache request object, as
you’ll see in the “Accessing the Response” section later in this chapter. First things first though.
In order to send a response, you first must receive a request.

Accessing the Request
The Apache request object gives you access to the actual request itself for the incoming request
from the client. This includes the method used for the request such as GET, POST, and so on, as
well as the path and HTTP version information.

Consider the code to print the incoming client request shown in Listing 11-2
(Printrequest.cgi).

Listing 11-2. Printing the Request

use strict;

my $r = shift;

$r->send_http_header('text/plain');
print $r->the_request();

When viewed through a browser, the output shows the incoming request, as shown in
Figure 11-6.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 211

Using Methods to Retrieve Request Values
The request, through the_request() method just shown, is further broken down into the rele-
vant parts through other methods. Listing 11-3 (Printrequestbits.cgi) prints the relevant
items from the request.

Listing 11-3. Printing Some Relevant Items from the Request

use strict;

my $r = shift;

$r->send_http_header('text/plain');

print "Method: ", $r->method, "\n";
print "URI: ", $r->uri, "\n";
print "Path: ", $r->path_info, "\n";
print "Hostname: ", $r->hostname, "\n";
print "Protocol: ", $r->protocol, "\n";
print "File: ", $r->filename, "\n";

The output from this program is shown in Figure 11-7.

Figure 11-6. The incoming client request as viewed through the Apache request object

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL212

Missing from this example is the query string that can be included in a request. The query
string is the portion of the URI that follows the path. Consider this example:

http://www.example.com/cgi-bin/order.cgi?name=Steve&value=ID

Here, the query string is as follows:

?customerid=5150&action=order

The items on the query string (after the ?) lend themselves to the name=value structure
native in a hash. You can use the args() method to access the query string. It’s no surprise that
there are many ways to work with these name=value pairs. The first and most basic simply accesses
the args() method directly, as shown in Listing 11-4 (Printquery.cgi).

Listing 11-4. Printing the Query String

use strict;

my $r = shift;

$r->send_http_header('text/plain');

print "Query String: ", $r->args, "\n";

Examining the output from this program, illustrated in Figure 11-8, shows that the
name=value pairs have been essentially concatenated by the call to $r->args.

Figure 11-7. The relevant bits of the request

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 213

Another way to call the args() method is to cast it into a scalar, as shown in Listing 11-5
(Printquery2.cgi).

Listing 11-5. Casting args() into a Scalar

use strict;

my $r = shift;

$r->send_http_header('text/plain');

print "Query String: ", scalar $r->args, "\n";

This example produces output as it was received, including ampersands and equal signs,
as illustrated in Figure 11-9.

Figure 11-8. Output from the args() method

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL214

Yet another way to accomplish the task at hand is to place the output from the args()method
into a hash, and then iterate through the hash, as shown in Listing 11-6 (Printquery3.cgi).

Listing 11-6. Iterating Through the Arguments

use strict;

my $r = shift;

$r->send_http_header('text/plain');

my %args = $r->args;

foreach my $arg (keys %args) {
print "$arg = $args{$arg}\n";

}

This example has the effect of producing traditional name=value pairs that are easier to
work with inside the program. This cleaner output is shown in Figure 11-10.

Figure 11-9. Another way to produce output from the args() method

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 215

Using the args() method as shown in the previous examples works well in most instances.
However, for multivalued objects, the normal ways to access this hash can’t be used effectively. For
instance, consider what would happen to the name=value nature of a CGI program called like this:

http://www.example.com/cgi-bin/order.cgi?action=order&action=final

Notice that there are two values for the action in the query string. The output in Figure 11-11
shows what happens when this query string is encountered by code similar to that shown in
Listing 11-5.

Figure 11-10. The output from yet another way to retrieve the query string

Figure 11-11. Output from a multivalued query string

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL216

Figure 11-12. Output from a multivalued query string

Compare this output with that shown in Figure 11-12. This output was produced by plac-
ing the output from the args() method into a hash, as shown in Listing 11-6. Notice that only
the final value for the action parameter is actually sent to output.

Although you can iterate through multivalued parameters, if your CGI program will be
using multivalued parameters, I recommend using the CGI.pm’s methods for accessing these
values, rather than coding around the args() method.

So far, these methods retrieve values from GET requests. For POST requests, use the content()
method, as shown in Listing 11-7 (Post.cgi).

Listing 11-7. Using the content() Method

use strict;

my $r = shift;

$r->send_http_header('text/plain');

my %data = $r->content;

foreach my $name (keys %data) {
print "$name = $data{$name}\n";

}

This code looks and is largely similar to Listing 11-6, which retrieved arguments using the
args() method. Mainly, the variable names have been changed to protect the innocent. The
only substantive difference is to the method used: content() in this case.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 217

The Apache::Request class provides the most flexible method for working with form data
through the param() method, as in the example in Listing 11-8 (Param.cgi).

Listing 11-8. Using the param() Method to Look at Parameters

use Apache::Request;

my $r = Apache::Request->new(shift);

$r->send_http_header('text/plain');

foreach my $param ($r->param) {
print "Param: $param = " , $r->param($param), "\n";

}

The param() method works like CGI.pm, but is implemented in the C programming language
as opposed to Perl. The param() method works with both GET and POST data.

■Note The examples in this section also demonstrate how to work with HTML form fields through
mod_perl. They show how to parse the parameters from the GET or POST request.

Other methods related to the incoming request include header_only(), for determining
whether or not the incoming request was a HEAD type request, and proxyreq(), for determin-
ing whether or not the request is a proxy request. Both of these methods return true if they
are positive, meaning that the method will return true if it’s a HEAD request or if it’s a proxy
request, respectively.

Accessing Request Headers
So far, you’ve seen the actual request and methods for working with the request. As noted ear-
lier, the client may also send headers related to the request.

You can access request headers through the headers_in() method, which contains a set of
name=value pairs. The headers_in() method is part of the Apache::Table class, which also con-
tains other class methods, including the following:

• err_headers_out()

• headers_out()

• info()

• notes()

• subprocess_env()

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL218

Each of the class methods of Apache::Tablehas its own set of methods, including the following:

• add()

• clear()

• do()

• get()

• merge()

• new()

• set()

• unset()

Since name=value pairs are sent from the headers_in() method, the output naturally lends
itself to being represented in a hash. Listing 11-9 (Headersin.cgi) prints the output from the
headers_in() method.

Listing 11-9. The headers_in() Method to See Name=Value Pairs

use strict;

my $r = shift;

$r->send_http_header('text/plain');

my %headers = $r->headers_in();

foreach my $header (keys %headers) {
print "$header = $headers{$header}\n";

}

The output is shown in Figure 11-13.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 219

Figure 11-13. The headers for a request retrieved using the headers_in() method

You could access individual headers by calling them within the hash. For example,
Listing 11-10 (Printuseragent.cgi) shows the code to see the user agent used for the request.

Listing 11-10. Looking at the User Agent

use strict;

my $r = shift;

$r->send_http_header('text/plain');

my %headers = $r->headers_in();

print "The User-Agent is: $headers{'User-Agent'}\n";

The output from this program is shown in Figure 11-14.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL220

Figure 11-14. Printing the user agent based on output from the headers_in() method

Accessing the Response
Using the Apache request object, you can set headers in the response, as well as to send server
status codes.

Setting a Response Header
Earlier, you saw an example to send the Content-Type response header. As a refresher, that code
looks like this:

my $r = shift;
$r->send_http_header('text/html');

The method used, send_http_header(), is fine for the examples that were shown insofar as
it sets the Content-Type and sends the header on its way. However, if you need to set other head-
ers in the response, then calling send_http_header will preclude that from happening. Rather, if
you need to set the Content-Type and set other headers in the response, you should use the
content_type() method, and then use the send_http_header() method, as in this example:

my $r = shift
$r->content_type('text/html');
$r->send_http_header();

By using the content_type() method and send_http_header() methods separately in this
way, you can set other headers prior to sending them to the client. You can set other headers
within the response using the methods described in Table 11-1.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 221

Table 11-1. Methods for Response Headers

Method Description

content_type() Sets the MIME type as will be sent by the Content-Type header

set_content_length() Sets the Content-Length header

set_last_modified() Sets the Last-Modified header

no_cache() Sets the No_Cache header

To set nonstandard headers, you can use another method, header_out(), as in this example:

my $r = shift;

$r->header_out("X-Server" => "My Apache Server v4");
$r->send_http_header;

Setting Response Status
Response codes are likely familiar to any web user. From a 404 Not Found to a 500 Internal
Server Error or a 200 OK, these response codes communicate the status of the response back
to the requesting client. The Apache::Constants class makes these response codes available to
you. The response codes available through Apache::Constants use a relatively friendly name.
Some of the more common names are described in Table 11-2.

Table 11-2. Apache::Constants for Server Status Messages

Apache::Constants Name Status Code

REDIRECT 302 Found

NOT_FOUND 404 Not Found

SERVER_ERROR 500 Internal Server Error

OK 200 OK

AUTH_REQUIRED 401 Unauthorized

This code sends a 404 Not Found error to the client:

use Apache::Constants qw/:common/;

my $r = shift;

$r->status(NOT_FOUND);

This is a simple example. Of interest here is that the Apache::Constants class is loaded
into the namespace. Notice that only the common set of status codes were imported into the
namespace. Rarely will a program call for status codes from Apache::Constants that are not
within the common namespace. You can also import only the status codes that you need for
a given task. For example, in the previous example, it would be better to just import NOT_FOUND
into the program’s namespace, as shown here:

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL222

use Apache::Constants (NOT_FOUND);

my $r = shift;

$r->status(NOT_FOUND);

■Note You can also use methods for specific error headers. See the documentation for Apache::Table
and mod_perl for more information about these headers.

Working with Cookies
As you know, cookies are another object that can be sent in the HTTP header. You can use the
Apache::Cookie class, part of libapreq, to set and retrieve cookies the mod_perl way.

Jump in the wayback machine to Chapter 1, which covered cookies in detail. There,
you learned all about the values for cookies and how to set them with CGI.pm. Unlike
CGI.pm, Apache::Cookie is written in C. This section looks at writing and reading cookies
using Apache::Cookie.

Writing Cookies
Cookies are written or sent to the client by instantiating a new Apache::Cookie object. The
Apache::Cookie class contains methods that correspond to the various elements of a cookie,
such as name, value, path, secure, expires, and so on. You can set these values when instanti-
ating the object through the new() method or via calls to their respective method. Table 11-3
lists the methods, as well as the name of the corresponding parameter if you’re using them
when instantiating the object.

Table 11-3. Apache::Cookie Methods and Parameters

Method Parameter Description

name() -name The cookie name

value() -value The cookie’s value

expires() -expires The cookie’s expiration

domain() -domain The domain from which the cookie can be read

path() -path The path for the cookie

secure() -secure Whether or not the cookie must be read over an SSL transport

The cookies are sent to the browser with the bake() method. Listing 11-11 (Cookiewriter.cgi)
shows an example that sets a cookie called testcookie using the Apache::Cookie class.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 223

Figure 11-15. The cookie set with Apache::Cookie

Listing 11-11. Sending a Cookie with Apache::Cookie

use Apache::Cookie;

use strict;

my $r = shift;

my $cookie = Apache::Cookie->new($r,
-name => "testcookie",
-value => "testvalue",
-path => "/",

);

$cookie->bake();

$r->send_http_header();

The values for the cookie in the example are set via the new() method, and the bake()
method is called to actually send the cookie to the client. The cookie arriving at the browser
is shown in Figure 11-15.

You can also set or change the parameter values for cookies by calling each individual
method prior to calling bake(). For example, the program in Listing 11-12 (Securecookie.cgi)
sets the secure flag on the cookie after it has already been instantiated with the new() method.

Listing 11-12. Sending a Secure Cookie

use Apache::Cookie;

use strict;

my $r = shift;

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL224

Figure 11-16. A dialog box indicating that a cookie with the secure flag was sent

my $cookie = Apache::Cookie->new($r,
-name => "securecookie",
-value => "securevalue",
-path => "/",

);

$cookie->secure('1');

$cookie->bake();

$r->send_http_header();

Notice that, in addition to the purely superficial name of the cookie itself changing, the
secure method() is also called in this code:

$cookie->secure('1');

When sent to the browser, this will mean that the cookie can be read only over an encrypted
channel such as over SSL. The cookie alert dialog box is shown in Figure 11-16. Notice the “Send
For: Encrypted connections only” wording in this cookie.

Reading Cookies
You can also use Apache::Cookie to read cookies that are sent by the client. You can use either
the parse() method or the fetch() method to retrieve the cookies.

The parse() method operates in three modes: the method can retrieve all cookies as a hash
reference, as a hash, or individually. Listing 11-13 (Cookiereader.cgi) shows an example of retriev-
ing cookies using Apache::Cookie’s parse() method as a hash.

Listing 11-13. Retrieving a Cookie with Apache::Cookie

use Apache::Cookie;

use strict;

my $r = shift;

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 225

Figure 11-17. Retrieving cookies using Apache::Cookie and printing the names and values of the
cookies

my %cookies = Apache::Cookie->new($r)->parse;

$r->send_http_header('text/plain');

foreach my $cookie (keys %cookies) {
print "Name: ", $cookies{$cookie}->name, "\n";
print "Value: ", $cookies{$cookie}->value, "\n";

}

The results of this code, when called through a browser, are shown in Figure 11-17.

■Note Make sure you actually set a cookie before trying to retrieve the cookie with the code in Listing 11-13.
It only took me about ten minutes to figure out that I hadn’t set a cookie, which is why my code wasn’t produc-
ing any output.

Uploading Files
Uploading files is another area where there is also a suitable CGI.pm function for accomplishing
the task. However, using Apache::Request and Apache::Upload can yield better performance.

The main interface for uploading files with Apache::Upload is the upload() method. This
method can be called in a scalar context, and it will return a single upload object. If called in

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL226

a list context, the upload() method will return objects corresponding to the number of files
uploaded.

Apache::Upload contains a number of methods for working with uploaded files. For more
information about working with file uploads through Apache::Upload, see the Perl documen-
tation for Apache::Upload.

Working with the Apache Server
Like the HTTP request, the behavior of the Apache server itself can be examined and controlled
using mod_perl. The Apache::Server object enables things like child creation and log control
through a mod_perl interface. This section looks at the Apache::Server object.

Using Apache::Server is similar to Apache::Request in that you’ll typically create an instance
of the server local to your program, with something like this:

my $r = shift;
my $server = $r->server;

More commonly, you’ll see the Apache server object placed into a variable called $s, like this:

my $s = $r->server;

The server object in this example is created from the current request object; you can see
that the $r request object is created first. This means that the server object will be related to
whatever server section is actually serving the request within the Apache configuration. You
could also call Apache::Server directly, which would then give you an object related to the
properties that aren’t specific to the current request.

■Caution Any changes made to the Apache server through the Apache server object will last for the life-
time of the child Apache process.

Getting Information About the Server
Through the Apache server object, you can find out a lot about the Apache server itself, all
from within a Perl program. As an example, Listing 11-14 (Showserver.cgi) prints out some
information about the server using various methods available with Apache::Server.

Listing 11-14. Printing Information About the Apache Server

use strict;

my $r = shift;

my $s = $r->server;

$r->send_http_header('text/plain');

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 227

Figure 11-18. Output from a program to get information about the server

print "UID: ", $s->uid, "\n";
print "GID: ", $s->gid, "\n";
print "Port: ", $s->port, "\n";
print "Timeout: ", $s->timeout, "\n";
print "ErrorLog: ", $s->error_fname, "\n";
print "ServerName: ", $s->server_hostname, "\n";

When viewed through a browser, the output looks similar to that in Figure 11-18.

■Note Here’s some trivia: The server name in Figure 11-18, ord, is named after the O’Hare Airport in
Chicago.

For more information about the methods available with Apache::Server, see the Perl doc-
umentation for Apache::Server.

Controlling Logging
Another interface to work with the Apache server is through Apache::Log. Using Apache::Log,
you can write to the Apache error log.

Within the error log are eight levels of errors, corresponding to the logging levels available
on a Linux system, such as warn, info, debug, error, and so on. Each of these logging levels has
its own method within Apache::Log. In other words, by calling the individual method, you can
control which logging level will be used. The logging level methods are as follows:

• emerg()

• alert()

• crit()

• error()

• warn()

• notice()

• info()

• debug()

A log object is instantiated through a current request within a mod_perl program:

my $log = $r->server->log;

There’s really not much to writing a log entry. Instantiate a request object, then instantiate
a log object, and then write to the log. Listing 11-15 (Logger.cgi) shows an example.

Listing 11-15. Printing to the Error Log with Apache::Log

use Apache::Log;

use strict;

my $r = shift;

my $log = $r->server->log;

$log->error("Moo");

When executed, this code produces an entry in the error log like this:

[Sat Jun 11 20:12:23 2005] [error] Moo

As previously stated, Apache::Log can write at any of the eight logging levels, so instead of
calling the error() method, you could make that a warning instead:

use Apache::Log;

use strict;

my $r = shift;

my $log = $r->server->log;

$log->warn("Moo");

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL228

This would produced a warning in the error log:

[Sat Jun 11 20:14:32 2005] [warn] Moo

■Note If you’re not receiving an error message in your log file, check the LogLevel directive in your
Apache configuration.

Listing 11-16 (Logua.cgi) shows another example that incorporates a log message with an
earlier example to look at the user agent. This code will print a warning in the error log if the
site is visited by an Internet Explorer user.

Listing 11-16. Logging Based on the User Agent

use Apache::Log;

use strict;

my $r = shift;
my $log = $r->server->log;

$r->send_http_header('text/plain');

my %headers = $r->headers_in();

if ($headers{'User-Agent'} =~ m/MSIE/) {
$log->warn("Someone is actually still using IE");

}

When visited by a browser with the string MSIE in UserAgent, the warning is printed in the
error log:

[Sat Jun 11 20:22:16 2005] [warn] Someone is actually still using IE

Security Considerations with mod_perl, Revisited
As noted in Chapter 10, using mod_perl introduces its own set of security risks. Since the Perl
interpreter is embedded into the Apache process, and since namespaces can be shared, there
is potential for data to be read and possibly altered within and between programs running
with mod_perl. Keeping namespaces clean by using local variable scope and using the use
strict pragma go a long way toward mitigating this risk. This is less of a concern on a server
that isn’t shared.

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL 229

CHAPTER 11 ■ DEVELOPMENT WITH MOD_PERL230

In addition, consider exactly what you’re doing with mod_perl programs when working
with the Apache request/response lifecycle and the Apache server itself. All of these things can
introduce risk into programs if they are executed maliciously. For instance, writing to log files
from a mod_perl program could result in an attacker filling up a disk with spurious log entries.

Finally, mod_perl inherits all of the risks present in CGI programs, such as possible attacks
if input from forms isn’t properly sanitized. Refer to the earlier chapters on CGI programming
(Chapters 1 through 4) for more information about those security considerations.

Summary
This chapter examined development with mod_perl. You learned about variable scoping with
mod_perl, Apache::Registry, and the Apache request object. To appreciate the full power of
mod_perl, I highly recommend working with it to perform more advanced programming and
to increase the performance of your programs. The benefits of mod_perl for high-performance
web sites are immense.

Looking ahead, the next chapter will shift gears once again and discuss templating with
Perl. By using templates, you can increase your web design productivity. As you’ll see, Perl
offers more than a few options for templating.

Creating Web Templates

P A R T 5

■ ■ ■

The Template Toolkit

Although templates don’t seem quite as fun as, say, programming a SOAP interface into the
United States National Weather Service, they are actually quite interesting and they are defi-
nitely timesavers. I have yet to meet a Perl programmer who doesn’t like saving time; let the
computer do the work.

In this chapter, you’ll examine the Template Toolkit in detail, and then concentrate on
using the Template Toolkit to create and maintain a web site. But first, let’s briefly look at why
Perl is ideal for use with templates.

Perl and Templates
Perl lends itself to the task of creation and completion of templates on many levels. Whether it’s
plain text substitutions in plain text documents, PDFs, or HTML, Perl is an excellent language
for working with templates, for the same reasons Perl is great for almost any task:

• Perl is lightweight. There’s not much overhead required to create powerful programs.

• Perl is easy to learn. You don’t have to work through idiotic and arcane syntax to make
Perl programs do what you want them to.

• Perl is widely supported. You can run Perl programs on many platforms and architectures.

These and a whole host of other reasons give Perl an advantage for templates and beyond.
I currently use the Perl templating software Mason for my web site. Using Mason, I’m able

to define a common header and footer for the site and have pages constructed on-the-fly using
those items. Mason works with mod_perl and integrates tightly into the process of serving web
page. Mason will be covered in detail in Chapter 13.

Converting a site to Mason can be a little involved, and there are other well-implemented
Perl packages for templating available. You’ll look at one such package, the Template Toolkit,
next in this chapter. The Template Toolkit is easy to learn and offers a good way to get your feet
wet with templating, to find out if you want to convert your site to Mason (or if you need to
convert it to Mason!).

233

C H A P T E R 1 2

■ ■ ■

CHAPTER 12 ■ THE TEMPLATE TOOLKIT234

Template Toolkit Introduction
The Template Toolkit is powerful template processing software for Perl that’s actually a com-
bination of a number of packages. Far from being a one-hit wonder, the Template Toolkit is
a great multitasker (how’s that for mixing metaphors) that is able to work with HTML as well
as other formats, such as XML and even PDF.

In this section, you’ll learn about templating with Perl through the Template Toolkit.

Template Toolkit Example
Templates are objects (think: documents) that enable copying or reuse of textual patterns con-
taining a mix of dynamic, changing text, surrounded by static and unchanging text. You can
think of a template as a classic form letter—for example, “Dear [Your Name Here], You have just
won a million dollars!” A marketing company develops the main body of text, “You have just won
a million dollars,” and plugs that into a document. The company then feeds the document
through some template-processing software to substitute the “[Your Name Here]” part with
someone’s actual name. The final version would (or should) read, “Dear Steve Suehring, You
have just won a million dollars!”

This isn’t very far off from the Template Toolkit syntax. Changing the form letter to typical
Template Toolkit syntax and filling it out a little more might look like this:

Dear [% recipient %],

You have just won a million dollars! To retrieve your million dollars,
send your bank account information to [% scammer_address %]. I will
require you to give me [% scam_amount %] so that I can get the funds.

Yours,

[% scammer_name %]

This text is saved to a file called templateexample.txt. Creating the end result letter with
the Template Toolkit looks like this:

tpage --define recipient=Steve \
> --define scammer_name=Dan \
> --define scammer_address=dan@example.com \
> --define scam_amount=\$500 \
> templateexample.txt

The final letter is as follows:

Dear Steve,

You have just won a million dollars! To retrieve your million dollars,
send your bank account information to dan@example.com. I will
require you to give me $500 so that I can get the funds.

Yours,

Dan

The command tpage processes templates with the Template Toolkit on a file-by-file basis.
This is in addition to the ttree command that processes templates on a per-directory basis. Both
commands are covered in detail later.

The command shown to process the template first defines four variables: recipient,
scammer_name, scammer_address, and scam_amount. Notice that the order of these definitions is
not tied to the order in which they appear in the document, as scammer_name was used last in
the document but defined second. The command then indicates which template to process—
templateexample.txt, in this case.

When executed, the command prints to STDOUT. This could easily be shell redirected
into a new file I’ll call letter.txt:

tpage --define recipient=Steve \
> --define scammer_name=Dan \
> --define scammer_address=dan@example.com \
> --define scam_amount=\$500 templateexample.txt > letter.txt

You’ve now seen a rudimentary example of what the Template Toolkit can do. The benefits
you can reap from the Template Toolkit are directly related to the number of templates you can
create for processing.

Considering specifically web site creation and maintenance, pages frequently have a com-
mon or usually common header and footer. Using the Template Toolkit, it’s possible to create
that common header and footer, and feed the raw pages through ttree to create the site.

Beyond tpage and ttree, the Template Toolkit can plug directly into Apache through
mod_perl with the help of the Apache::Template module. Using Apache::Template, it’s possible
to create pages on-the-fly with the Template Toolkit. Apache::Template won’t be covered in
much detail in this chapter but another on-the-fly web page creation module (Mason) will be
covered in the next chapter.

Using the Template Toolkit
The Template Toolkit is a large and powerful application set. You can use the toolkit through
several interfaces, including two programs (tpage and ttree), a Perl module, and an Apache
module. This section begins by examining the interfaces that you’ll use to process templates
through the Template Toolkit.

tpage
As you’ve seen already, the tpage program can be used to process a template where the name
of the template is used as an argument. The output is sent to STDOUT. You can also send the
output through a redirect to send it into a file, as was shown previously as well.

When using tpage to process a file, it’s common to use the --define option to define vari-
ables for substitution. This example was shown earlier and is repeated here for your reference:

tpage --define recipient=Steve \
> --define scammer_name=Dan \
> --define scammer_address=dan@example.com \
> --define scam_amount=\$500 templateexample.txt > letter.txt

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 235

You can also call tpage without any arguments to use it in interactive mode. When using tpage
in interactive mode, you’re required to enter both the variables and the text. A ^D indicates the
end of input and the beginning of processing. From the command prompt, you type tpage, as
in this example:

tpage
[% server = 'www'

ip = '127.0.0.1'
%]
We noticed that your server, [% server %], at IP [% ip %],
is currently down.

When you’re ready to process the template, press Ctrl+D (^D) to begin processing. Here’s
the output you’ll see:

We noticed that your server, www, at IP 127.0.0.1,
is currently down.

ttree
When updating a web site with the Template Toolkit, you’ll frequently use the ttree program.
ttree operates on entire directories of files and offers much greater flexibility to the developer
attempting to maintain a large web site through templates. ttree offers a huge number of
options, compared with tpage, as shown in Listing 12-1.

Listing 12-1. Options Available with ttree

ttree 2.78 (Template Toolkit version 2.14)

usage: ttree [options] [files]

Options:
-a (--all) Process all files, regardless of modification
-r (--recurse) Recurse into sub-directories
-p (--preserve) Preserve file ownership and permission
-n (--nothing) Do nothing, just print summary (enables -v)
-v (--verbose) Verbose mode
-h (--help) This help
-s DIR (--src=DIR) Source directory
-d DIR (--dest=DIR) Destination directory
-c DIR (--cfg=DIR) Location of configuration files
-l DIR (--lib=DIR) Library directory (INCLUDE_PATH) (multiple)
-f FILE (--file=FILE) Read named configuration file (multiple)

File search specifications (all may appear multiple times):
--ignore=REGEX Ignore files matching REGEX
--copy=REGEX Copy files matching REGEX
--accept=REGEX Process only files matching REGEX

CHAPTER 12 ■ THE TEMPLATE TOOLKIT236

File Dependencies Options:
--depend foo=bar,baz Specify that 'foo' depends on 'bar' and 'baz'.
--depend_file FILE Read file dependencies from FILE.
--depend_debug Enable debugging for dependencies

File suffix rewriting (may appear multiple times)
--suffix old=new Change any '.old' suffix to '.new'

Additional options to set Template Toolkit configuration items:
--define var=value Define template variable
--interpolate Interpolate '$var' references in text
--anycase Accept directive keywords in any case.
--pre_chomp Chomp leading whitespace
--post_chomp Chomp trailing whitespace
--trim Trim blank lines around template blocks
--eval_perl Evaluate [% PERL %] ... [% END %] code blocks
--load_perl Load regular Perl modules via USE directive
--absolute Enable the ABSOLUTE option
--relative Enable the RELATIVE option
--pre_process=TEMPLATE Process TEMPLATE before each main template
--post_process=TEMPLATE Process TEMPLATE after each main template
--process=TEMPLATE Process TEMPLATE instead of main template
--wrapper=TEMPLATE Process TEMPLATE wrapper around main template
--default=TEMPLATE Use TEMPLATE as default
--error=TEMPLATE Use TEMPLATE to handle errors
--debug=STRING Set TT DEBUG option to STRING
--start_tag=STRING STRING defines start of directive tag
--end_tag=STRING STRING defined end of directive tag
--tag_style=STYLE Use pre-defined tag STYLE
--plugin_base=PACKAGE Base PACKAGE for plugins
--compile_ext=STRING File extension for compiled template files
--compile_dir=DIR Directory for compiled template files
--perl5lib=DIR Specify additional Perl library directories
--template_module=MODULE Specify alternate Template module

See 'perldoc ttree' for further information.

Like tpage, ttree can have its execution controlled by combining these options on the
command line. However, when working with ttree, it’s common to use a configuration file to
hold information about the project, its file locations, and the behavior for ttree. Configuration
files are typically created on a per-project basis and then either included on the command line
for ttree or placed in the ttree run control file.

Controlling the execution of ttree is a run control (rc) file called .ttreerc, which is located
in your home directory by default. The first time that you run ttree, you are presented with
a prompt to create a sample configuration file:

Do you want me to create a sample '.ttreerc' file for you?
(file: /home/suehring/.ttreerc) [y/n]:

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 237

I recommend entering a y to indicate that ttree should create the run control file. The
default run control file contains some interesting bits of information, as shown in Listing 12-2.

Listing 12-2. Default Run Control File

#--
sample .ttreerc file created automatically by ttree version 2.78
#
This file originally written to /home/suehring/.ttreerc
#
For more information on the contents of this configuration file, see
#
perldoc ttree
ttree -h
#
#--

The most flexible way to use ttree is to create a separate directory
for configuration files and simply use the .ttreerc to tell ttree where
it is.
#
cfg = /path/to/ttree/config/directory
print summary of what's going on
verbose

recurse into any sub-directories and process files
recurse

regexen of things that aren't templates and should be ignored
ignore = \b(CVS|RCS)\b
ignore = ^#

ditto for things that should be copied rather than processed.
copy = \.png$
copy = \.gif$

by default, everything not ignored or copied is accepted; add 'accept'
lines if you want to filter further. e.g.
#
accept = \.html$
accept = \.tt2$

options to rewrite files suffixes (htm => html, tt2 => html)
#
suffix htm=html
suffix tt2=html

CHAPTER 12 ■ THE TEMPLATE TOOLKIT238

options to define dependencies between templates
#
depend *=header,footer,menu
depend index.html=mainpage,sidebar
depend menu=menuitem,menubar
#
#--
The following options usually relate to a particular project so
you'll probably want to put them in a separate configuration file
in the directory specified by the 'cfg' option and then invoke tree
using '-f' to tell it which configuration you want to use.
However, there's nothing to stop you from adding default 'src',
'dest' or 'lib' options in the .ttreerc. The 'src' and 'dest' options
can be re-defined in another configuration file, but be aware that 'lib'
options accumulate so any 'lib' options defined in the .ttreerc will
be applied every time you run ttree.
#--
directory containing source page templates
src = /path/to/your/source/page/templates
#
directory where output files should be written
dest = /path/to/your/html/output/directory
#
additional directories of library templates
lib = /first/path/to/your/library/templates
lib = /second/path/to/your/library/templates

The items in this run control file are also used in a configuration file. Therefore, if you
maintain only one site, you can leave the .ttreerc file as is. However, if you maintain more
than one site with the Template Toolkit, you’ll likely want to create a minimal .ttreerc file and
call individual ttree configuration files based on each project. You should do this because
each ttree configuration file will hold information about files to ignore, directories to find the
template files and to place the output files, and so on. Specifying the configuration file for
ttree to use as part of its command line looks like this:

ttree -f /path/to/project-ttree.cfg

A Quick Look at ttree Options

When using ttree to create and manage a web site, it’s common to use certain directives and
options. Some of those options are placed in the default .ttreerc file shown previously. This
section looks briefly at a few of those options before they are discussed in detail later.

Since ttree operates on templates within a directory, you need to tell it where to find the
source template files. Related to that, you also need to tell ttree where to place the destination
or output files. The -s and -d command-line options specify the source and destination direc-
tories, respectively:

ttree -s sourcedir -d destdir

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 239

Headers and footers are the common text that appears on many web sites at the top
and bottom of pages. A header might include a common menu or navigation components,
while the footer might include a copyright notice and contact information. Rather than
including this text inside of each file to be processed by ttree, they can be included using the
pre_process and post_process options:

ttree -s sourcedir -d destdir --pre_process=headerfile --post-process=footerfile

When processing templates with headers and footers, the pre_processed headers frequently
need to use variables. For example, a web page header template would usually need to define
a title to go within the <title></title> markup. To have these defined on a per-page basis,
developers frequently use the META directive within an individual template file to define a vari-
able that is accessible to all pages being processed, even those that are pre_processed. The META
directive will be shown later in the chapter during a full example of ttree. For now, know that
if you’re using a common header and footer, and you need to have variables available within
the pre_processed header, you will need to define it using META:

[% META variable = "Value" %]

The Template Module and Apache::Template
In addition to the tpage and ttree commands that come with the Template Toolkit, you can
also use the Template Toolkit as a module within Perl programs by importing it into the name-
space with the familiar use pragma:

use Template;

You can use the Template Toolkit along with the Apache::Template module on a mod_perl-
enabled Apache server to process templates on-the-fly and serve them through the Apache
server. Apache::Template is available from your favorite CPAN mirror.

Using Apache::Template and the Template module within a Perl program will not be cov-
ered further in this chapter.

Template Toolkit Syntax
The Template Toolkit is a powerful and mature template-processing package. That power and
maturity is particularly evident in the syntax, which includes the use of variables, directives,
filters, and other properties of the processing language. In this section, you’ll look at some of
the primary syntactical items in the Template Toolkit.

■Note When processing templates through the Template Toolkit, items within the tags ([% and %]) will be
processed by the Toolkit as being part of the directive. Other text won’t be processed at all. You can change
this behavior with chomping options PRE_CHOMP and POST_CHOMP, as well as the INTERPOLATE option.
INTERPOLATE is interesting because it causes the text outside of the tags to be processed looking for vari-
ables with a $ prefix.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT240

Chomping
A side effect of the Template Toolkit is that white space is ignored—even the extra white space
created by template directive blocks. This is usually fine for HTML processing, but it can cause
headaches for web designers at times. For example, consider the following code:

Welcome,
[% month = october %]
Thank you for visiting.

This would be processed with the extra newline character left intact and output as fol-
lows:

Welcome,

Thank you for visiting.

The Template Toolkit enables you to control the “chomping” of white space by using the -
flag from within a directive or the PRE_CHOMP and POST_CHOMP options. A - directly following the
start tag causes newlines and white space preceding the directive to be removed. A - directly
before the end tag causes newlines and white space after the directive to be removed. Con-
sider this example:

Welcome,
[%- month = october %]
Thank you for visiting.

With the - directly following the start tag, the processing would essentially look like this:

Welcome,[%- month = october %]
Thank you for visiting.

which in turn results in output such as the following:

Welcome,
Thank you for visiting.

On the other hand, when you place the - directly preceding the end tag like this:

Welcome,
[% month = october -%]
Thank you for visiting.

the processing will essentially look like this:

Welcome,
[%- month = october %]Thank you for visiting.

and the output will look like this:

Welcome,
Thank you for visiting.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 241

The PRE_CHOMP and POST_CHOMP configuration directives can control this behavior at the
file or directory level when stored inside of the configuration file. When set to 1, these direc-
tives cause behavior as shown in the examples just shown. When set to 2, the newlines and
white space are collapsed into a single space rather than being removed entirely.

A + effectively toggles the behavior of the chomping, and it is used within individual
directives to control the chomping for that directive alone. In other words, if you enable both
PRE_CHOMP and POST_CHOMP in your configuration file, but you want to disable them for a certain
tag, you would use the following syntax:

Welcome,
[%+ month=october +%]
Thank you for visiting.

Other behaviors for chomping are also available. You can find out more about chomping
in the perldoc for Template::Manual::Config.

Interpolation
Using the INTERPOLATE option causes variables indicated with a $ to be interpolated within the
plain text of the template to be processed. Braces must be used when the Template Toolkit
cannot discern the variable name. For example, this code does not need braces:

Welcome,
It is now $month

However, this code needs braces:

Welcome,
Contact us at $email@$domain.com

In the preceding example, the process doesn’t know whether $email@$domain.com is all
one variable, or really how to handle it at all. Placing braces around the variables makes it
clear to the processor exactly what it should interpolate:

Welcome,
Contact us at {$email}@{$domain}.com

■Note When INTERPOLATE is enabled, you must escape any true $ characters that you want to use in
your code. For example, using $1.99 to indicate a price will confuse the processor; you should write this as
\$1.99.

Comments
Comments in code help you to remember why you did what you did when you did it. Chances
are that at some point you’ll go back to look at a piece of code and scratch your head, wonder-
ing what exactly that piece of code does. You can use comments inside of templates as well. As
in Perl, comments in a template are denoted by a hash sign (#). When used inside a template

CHAPTER 12 ■ THE TEMPLATE TOOLKIT242

directive, a comment effectively disables processing of the line upon which it appears, as in
this example:

[% # This line is not processed, but the next line is
PROCESS header

%]

Notice that there is a space between the start tag and the comment indicator in the pre-
ceding example. Concatenating the start tag and the comment character affects how the
comment works. If the start tag and the comment character are connected, the entire tem-
plate directive will be ignored, for example:

[%# This entire directive will be ignored.
PROCESS header

%]

This is a very subtle but important difference in comment processing between instances
where there is a space within the start tag and where the space is missing.

Tag Styles
Whether you’re using tpage or ttree, you can specify the type of tags to indicate the beginning
and end of an interpreted section. Recall that the default is [% and %]. The TAGS directive is
used to change this behavior, and you have several tag options. For example, this code
changes the default tags to the tag convention used in the PHP programming language:

[% TAGS php %]

The tags to indicate pieces of code to be processed are now <? and ?>.
Table 12-1 shows the different tag styles available.

Table 12-1. Tags Available with the Template Toolkit

Tag Name Start and End Tag

asp <% and %>

html <!-- and -->

mason <% and >

metatext %% and %%

php <? and ?>

star [* and *]

template [% and %]

template1 [% or %% and %] or %%

Beyond the predefined tag styles, you can create custom tag styles. For example, the fol-
lowing code changes the tag style to (- and -).

[% TAGS (- -) %]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 243

You can change the tag style as a configuration option as well. In practice, you’ll likely
change the tag style from within a configuration file, using the TAG_STYLE, START_TAG, and
END_TAG options, for a sitewide project as opposed to changing it from within an individual
template file.

Variables
Variables store information for use in processing the template. You can name variables with
alphanumeric characters and underscores. As with Perl, you can use scalars, arrays, and
hashes as variables in the Template Toolkit, and you can also use subroutines as variables
(dynamic variables).

In this section, you’ll look at defining and setting variables (both static and dynamic), and
you’ll see an example of working with variables.

Defining and Setting Variables
At their most basic, variables are defined and set with the SET directive. However, it’s rare to
actually use the SET directive; most times you’ll use simple assignment. The following code:

[% album = 5150 %]

is functionally equivalent to this:

[% SET album = 5150 %]

The GET directive retrieves the value previously set inside of a variable. Like SET, values
can also be retrieved implicitly. This code retrieves the value for the album variable:

[% album %]

Setting longer strings can be accomplished by putting the values in quotes:

[% artist = "Van Halen" %]

This value can be split over multiple lines:

[% artist = "Van
Halen"

%]

You can also set multiple values within the same directive:

[% album = 5150
artist = "Van Halen"

%]

Notice that these lines are not terminated by semicolons; this is the convention when set-
ting variables. However, when retrieving values, the lines must be terminated by semicolons:

[% album;
artist;

%]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT244

List variables are set by including the list of values within brackets, [and]:

[% months = [jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec] %]

■Note Commas are used to separate the values in the example, but they are not required. A space can be
used just the same.

These elements are accessed with dot notation, with the first index indicated by 0. For
example, this code accesses the second element in the months list example just shown:

[% month.1 %]

Based on that earlier example, the value for [% month.1 %] is feb.
While lists or arrays are indicated by brackets, [and], hashes are indicated by braces, {

and }:

[% months = {
jan => 'January'
feb => 'February'
mar => 'March'
apr => 'April'

}
%]

Values belonging to the keys of the hash are accessed using the dot operator with hash
variables. For example, the following code accesses the value for the key named mar in the
previous example:

[% months.mar %]

The value contained in [% months.mar %] is March. You can also use multiple dot operators
to create and retrieve arbitrarily long nested hashes.

■Note Variables declared with a leading underscore (_) character are defined as private and will not be
used outside the object’s methods.

Whereas the variable types just explained are static, meaning they only return values
explicitly set or assigned to them, dynamic variables can be assigned to Perl subroutines and
objects, which will then process and return information to the variables for use in template
processing.

Working with Variables
Mathematical operations can also be performed on variables when they are being set or
retrieved. This example adds the result of two dice being rolled:

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 245

[% GET die1 + die2 %]

In addition to the mathematical operators, logical operators such as and, or, and not can
be used:

[% GET diceroll or 0 %]

When a variable is accessed, either implicitly or with a GET, it is printed within the output.
The CALL directive enables access to variables or, more likely, subroutines and objects, without
printing the results from that call:

[% CALL diceroll.roll %]

Virtual Methods
According to the perldoc for Template::Manual, “The Template Toolkit provides virtual methods
for manipulating variable values.” To programmers familiar with object-oriented concepts,
some of these methods might be more readily referred to as properties. In any event, these
virtual methods, as they are known, enable you to quickly find out information about variables
and their contents.

For example, you can find out if a variable has been defined using the defined method:

[% IF connection.defined %]

and you can also determine the length of a variable:

[% textvar.length %]

Several other virtual methods are available to match, search and replace, split, and perform
other functions. Refer to the perldoc for Template::Manual::VMethods for more information on
these and other methods.

Directives
Directives are at the heart of working with templates. After reviewing some general information
about working with directives, this section moves on to cover includes, loops, conditionals,
exception handling, and blocks of Perl.

Working with Directives
You can retrieve output from directives by assigning that output to a variable within the directive:

[% months = PROCESS monthnames %]

Writing semicomplex code for processing can cause problems with readability of the tem-
plate. Rather than opening and closing each line of code, you can indicate a multiple-line
directive by ending the line with a semicolon, as in this example:

[% PROCESS header;
IF something;

INCLUDE file.txt;
END

%]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT246

Includes
You can include content from another template to reuse the code from that other template.
The INCLUDE, INSERT, PROCESS, and WRAPPER directives can all be used to insert or process
external code within the current template. The BLOCK directive can be used to localize parts of
template code that you want to process but don’t want to create an entirely new file for. Regardless
of which option you use, the INCLUDE_PATH option determines the location that will be searched
for the files to be included.

INCLUDE Directive

The INCLUDE directive causes a file to be included within the current template. You can send
arguments to the INCLUDE directive as well:

[% INCLUDE otherfile album="5150" %]

The INCLUDE directive localizes variables. This means that changes to variables made inside
an included file will not be seen by the file into which the included template is placed. If you
plan on using an INCLUDE, I recommend reading the perldoc for Template::Manual::Directives
to find out how variables are scoped when using INCLUDE.

To demonstrate this behavior, first create a file called diceroll with these contents:

[% dice = 5 %]

You’ll bring the contents of that file into a template called includeexample.tt. The following
listing shows the contents of the includeexample.tt file:

[%- dice = 11 -%
dice roll is [% dice %]
[%- INCLUDE diceroll -%]
dice roll is now [% dice %]

This file is then fed into tpage with this command:

tpage processexample.tt

The output is as follows:

dice roll is 11
dice roll is now 11

Notice that the value of the dice variable was not affected by the diceroll file. This behavior
is in contrast to the PROCESS directive, which is described next.

PROCESS Directive

The PROCESS directive is similar to the INCLUDE directive, with the significant difference being
the way PROCESS handles variables. Unlike the INCLUDE directive, changes made to variables
within a file called through a PROCESS directive will be seen by the template into which the file
is brought. Let’s demonstrate this behavior with an example.

First, create a file called diceroll with these contents:

[% dice = 5 %]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 247

You’ll bring the contents of the diceroll file into a template called processexample.tt.
Here are the processexample.tt file contents:

[% dice = 11 %]
dice roll is [% dice %]
[% PROCESS diceroll %]
dice roll is now [% dice %]

This file is then fed into tpage with the following command:

tpage processexample.tt

The output is as follows:

dice roll is 11

dice roll is now 5

■Tip Notice that you don’t have chomping enabled in this example. Since chomping isn’t enabled, the
output has extra newlines. Recall that you will either set pre- or post-chomping (or both) or use a dash to
indicate that chomping should be enabled, as in the earlier example.

Examination of the output shows that the value for the dice was indeed changed by the
file called in with the PROCESS directive.

INSERT Directive

The INSERT directive is used to insert the contents of a file at the current position of the tem-
plate. Its syntax is similar to that of INCLUDE:

[% INSERT otherfile %]

Use a plus sign (+) to concatenate multiple files with INSERT:

[% INSERT file1 + file2 %]

WRAPPER Directive

The WRAPPER directive causes a template file to be wrapped around the current text. While
WRAPPER is sometimes handy, coverage of this directive is beyond the scope of this chapter.
Refer to the perldoc for Template::Manual::Directives for more information on the WRAPPER
directive.

BLOCK Directive

The BLOCK directive can be used to localize parts of template code that you want to process but
don’t want to create an entirely new file for. The following is an example of using a BLOCK direc-
tive:

CHAPTER 12 ■ THE TEMPLATE TOOLKIT248

[%- BLOCK blockname -%]
This text is inside of a block and I can send in arguments
since they are so [% argument %]

[%- END -%]

The code within the BLOCK can then be called with a PROCESS or INCLUDE directive:

[% PROCESS blockname argument = "fun" %]

When this example is run through tpage, the output is as follows:

This text is inside of a block and I can send in arguments since they are so fun

Loops
As with loops in Perl, you can use loops in the template language to control the flow of pro-
cessing. The template language provides FOREACH and WHILE type loops. WHILE is useful for
performing an action until a condition occurs. FOREACH is useful when handling a known set of
data that should be iterated through in turn. Both directives process the code within their logi-
cal block up until a corresponding [% END %] is encountered.

FOREACH Directive

The syntax for the FOREACH directive is as follows:

[% FOREACH something IN listofthings %]
#Perform actions

[% END %]

The listofthings can be any valid list or array type variable, or it can be defined at the
time of the FOREACH loop’s definition, as in Listing 12-3.

Listing 12-3. FOREACH Directive

[% FOREACH number IN [1..5] -%]
[% number %]

[% END -%]

When this example is processed through tpage (tpage foreachex.tt), the output is as fol-
lows:

1
2
3
4
5

There are several helpful methods for iterating through items within a FOREACH block.
These methods are available through a variable called loop, which I’ll discuss later in the
chapter. An object called an iterator is used to traverse the list. Table 12-2 shows the methods
available to the loop variable.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 249

Table 12-2. Methods Available Within a FOREACH Directive

Directive Description

count The number of the current location within the list, beginning at 1

first A Boolean to indicate if the current location is the first item in the list

index The number of the current location within the list, beginning at 0

last A Boolean to indicate if the current location is the last item in the list

max The largest or maximum index number for the list

next The next item in the list, or undef if there are no additional items

prev The previous item in the list, or undef if the current location is already
on the first item

size The size of the list

Some of the differences between these methods are subtle but important. For example,
the index and count methods both can provide the location of the iterator within the list, and
max and count can both provide the size. Recall the example in Listing 12-3. I’ve added some
code to it to print the count, index, size, and max, as shown in Listing 12-4.

Listing 12-4. Using the loop Variable Within a FOREACH Directive

[% FOREACH number IN [1..5] -%]
Item: [% number %]
Count: [% loop.count %]
Index: [% loop.index %]
Max: [% loop.max %]
Size: [% loop.size %]

[% END -%]

The output from this code, when processed through tpage, is as follows:

Item: 1
Count: 1
Index: 0
Max: 4
Size: 5

Item: 2
Count: 2
Index: 1
Max: 4
Size: 5

Item: 3
Count: 3
Index: 2

CHAPTER 12 ■ THE TEMPLATE TOOLKIT250

Max: 4
Size: 5

Item: 4
Count: 4
Index: 3
Max: 4
Size: 5

Item: 5
Count: 5
Index: 4
Max: 4
Size: 5

Notice that as each item is processed, the count and index values increase, but they
started from different values: 0 for index and 1 for count. Notice also that the values for max
and size stayed the same, but because max begins counting from 0, it lists 4 as the maximum
number of items, whereas size shows 5.

Like native Perl, FOREACH loops are useful for iterating through hashed data within the
Template Toolkit as well. The example in Listing 12-5 shows a hash structure being created
and then iterated through with a FOREACH directive.

Listing 12-5. Iterating Through a Hashed Data Structure with FOREACH

[%- employees = [
{

name => "Frank Sanbeans"
username => "frank.sanbeans"

} {
name => "Sandy Sanbeans"
username => "sandy.sanbeans"

}]

domain = "example.com"
-%]

---===Employees===---

[% FOREACH emp IN employees -%]
Employee Name: [% emp.name %]
Username: [% emp.username %]
E-Mail: [% emp.username %]@[% domain %]

[% END -%]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 251

Here’s the output from this example:

---===Employees===---

Employee Name: Frank Sanbeans
Username: frank.sanbeans
E-Mail: frank.sanbeans@example.com

Employee Name: Sandy Sanbeans
Username: sandy.sanbeans
E-Mail: sandy.sanbeans@example.com

You can also nest FOREACH loops. The loop special variable will be scoped correctly within
the nests and when exiting from the nest into the main FOREACH loop.

WHILE Directive

The WHILE directive works like its native Perl counterpart. The syntax is similar to that of
FOREACH insofar as [% END %] denotes the end of the block to be executed by the WHILE loop:

[%- count = 0 -%]
[% WHILE count < 10 -%]
Count is [% count %]
[% count = count + 1 -%]
[%- END -%]

The NEXT and LAST options are also available within a WHILE loop, and they work like their
native Perl counterparts.

■Tip There is a default limit of 1,000 loops within a WHILE directive, to prevent never-ending loop conditions.
You can change this value by setting $Template::Directive::WHILE_MAX.

Conditionals
The Template Toolkit provides IF-ELSIF-ELSE, UNLESS, SWITCH, and CASE types of conditionals.
Like FOREACH loops, conditionals are terminated with [% END %].

IF-ELSIF-ELSE and UNLESS

Using the IF-ELSIF-ELSE structure is rather simple in the template language:

[% IF variable = = "true" %]
[% somethingelse = 43 %]
If was true.

[% ELSIF variable = "false" %]
[% somethingelse = 12 %]
It's false.

[% ELSE %]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT252

The variable was neither true nor false.
[% END %]

Notice that within the IF and ELSIF sections, the equality test is two equals signs separated
by a space:

= =

This is different from Perl-ish equality testing, which is either eq or two equals signs with
no space between them:

==

The UNLESS conditional is used like its Perl counterpart, as follows:

[% UNLESS variable = = "true" %]

SWITCH and CASE

Also like Perl, SWITCH and CASE type conditionals are available, though technically SWITCH is
not native in Perl, but rather is part of the switch module (though it will be standard in Perl 6).
With this much commonality between Perl and the template language, you can see that if you
know Perl, it should be easy to make the leap to the Template Toolkit language.

[% SWITCH searchengine %]
[% CASE "google" %]

Google was chosen.
[% CASE "yahoo" %]

Yahoo was chosen.
[% CASE %]

No choice was made
[% END %]

Notice that the last CASE statement contained no value for the variable. This is the default
case if no others match.

Exception Handling
Exception handling and error catching is necessary when working with templates, just as it is
when working with Perl. This is because templates can get quite complex, incorporating connec-
tions to databases and external files and programs. The Template Toolkit provides TRY-CATCH
blocks to trap errors within template code.

The TRY directive introduces a template and other information for processing. The TRY
directive continues processing until a corresponding END is encountered. If an error occurs,
the code within the CATCH block is executed. Consider the example in Listing 12-6.

Listing 12-6. TRY-CATCH Block

[% TRY %]
This code doesn't do much except maybe fail.
[% CALL othercode %]
[% INCLUDE sometemplatefile %]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 253

[% CATCH %]
Error: [% error.type %]: [% error.info %]

[% END %]

Along with some leading and trailing blank lines (not shown), the output from this exam-
ple is as follows:

This code doesn't do much except maybe fail.

Error: file: sometemplatefile: not found

As you can see in the preceding example, a special object called error is created within
the CATCH block. This error object has two properties, type and info, both of which are printed.
You can use the error type to perform more granular exception handling. Listing 12-7 shows
the file type error being caught.

Listing 12-7. Adding the Error Type to the CATCH Block

[% TRY %]
This code doesn't do much except maybe fail.
[% CALL othercode %]
[% INCLUDE sometemplatefile %]

[% CATCH file %]
File Error: [% error.info %]

[% CATCH %]
Error: [% error.type %]: [% error.info %]

[% END %]

The output from Listing 12-7 is as follows:

This code doesn't do much except maybe fail.

File Error: sometemplatefile: not found

The code sample used two new items. First, the type of error was checked and caught if it
was a file type (as would be reported by error.type), and a default CATCH block was also created.

One additional feature of the TRY-CATCH syntax is a FINAL block. Content and code within
a FINAL block get processed regardless of what happens within the TRY-CATCH blocks. This can
be helpful for printing footer or other information that’s necessary for the template you’re pro-
cessing.

Blocks of Perl
As if all of the power of template processing with Template Toolkit shown already isn’t enough,
you can also execute blocks of pure Perl code within a template by defining the code within
a PERL block inside of the template. The following example shows a Perl block in action:

[% PERL -%]
print "Hello, this is Perl!\n";

[% END -%]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT254

Running this template through tpage yields the following output:

Hello, this is Perl!

If you run this template through tpage (tpage listing12-8.tt, for example) and you receive
no output—except maybe something flashing on the screen—then you need to enable the
EVAL_PERL option. The quickest way to do this is by using the --eval_perl command-line option
with tpage (tpage --eval_perl listing12-8.tt). You can also enable this option within your
configuration file.

■Note Also available is the RAWPERL directive, which I don’t cover in this chapter. For more information on
the RAWPERL directive, refer to the perldoc for Template::Manual::Directives.

Plug-ins
Plug-ins provide interfaces to the world outside your template. Several standard plug-ins come
with the Template Toolkit, including a plug-in for date functions, one for the CGI module, and
one for the DBI module, just to name a few. You can specify and code your own plug-ins as well.

Date Plug-in
You use a plug-in by first calling it with the USE directive:

[% USE date %]

The date is then available throughout the template by calling the date variable, as follows:

[% USE date -%]
[% date.format %]

Here’s the output from this template:

21:09:07 30-Aug-2005

The date plug-in uses the strftime() routine to format dates. This means you have incred-
ible flexibility in formatting the date to fit your needs. The following code shows one way to
output just the date with the date plug-in:

[% USE date(format = '%m/%d/%Y') %]
[% date.format %]

The output from this code is as follows:

08/30/2005

■Note See the date manual page (man date) for more information on the date formatting options available.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 255

You can also change the date format and manipulate the date. See the perldoc for
Template::Plugin::Date for more information.

CGI Module Plug-in
The CGI module is available as a plug-in, too. Bring the CGI module into the namespace with
a USE directive:

[% USE q = CGI %]

You can then access the subroutines within the CGI module using dot notation, for example:

[% USE q = CGI %]
[% q.start_html %]
[% q.h1 %]Hello
[% q.end_html %]

The output from this template is as follows:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US"
xml:lang="en-US"><head><title>Untitled Document</title>

</head><body>
<h1 />Hello
</body></html>

In addition to the standard CGI subroutines and methods, a params() method specific to
the Template Toolkit is provided. This method enables named parameter processing within
the template. For example, an HTML form parameter of username could be accessed as fol-
lows:

[% params.username %]

■Tip Be sure not to confuse the params() method that is specific to the toolkit with the param subroutine
provided by the CGI module. Both can be used here, so it can get confusing. Use whichever is comfortable
for you. Assuming a CGI assignment of q, as in the previous example, you could even do something like
q.param('username').

DBI Module Plug-in
The DBI module can be used as a plug-in as well:

[% USE DBI('dbi:mysql:databasename, 'username', 'password') %]

Queries can be performed by calling the query method:

[% DBI.query('SELECT * from tablename') %]

CHAPTER 12 ■ THE TEMPLATE TOOLKIT256

For non-SELECT statements, a do method is provided:

[% DBI.do('DELETE FROM tablename ') %]

See the perldoc for Template::Plugin::DBI for more information on the DBI module, and
refer to the perldoc for Template::Manual::Plugins for information on the myriad other plug-
ins available with the Template Toolkit.

■Note It is difficult to cover everything you need to know about something as complex and powerful as the
Template Toolkit in a single chapter of a beginner-level book such as this. I invite you to serve yourself large
helpings of the perldoc for Template::Manual and its related documentation. There you’ll learn about
a number of subtleties to the items covered in this chapter and also some useful aspects of the Template
Toolkit that I wasn’t able to cover here.

Building a Web Site with Template::Toolkit
So far you’ve covered a lot of information on the Template Toolkit. It’s now time to look at
some of the aspects of building and maintaining a web site using the Template Toolkit. When
maintaining a site with the Template Toolkit, a good approach is to operate at the directory
level for global changes, which means using ttree. When making everyday changes to an indi-
vidual page, use tpage to process that file rather than processing all of the templates again.

Considering how templating can help you is likely the first step in converting to or design-
ing a web site for the Template Toolkit. You’ll likely take advantage of headers and footers, since
these elements are relatively common and static over most pages of a web site. Your needs and
goals for the site will determine which additional pieces of the Template Toolkit that you want
to use. These might include dynamic content or complex variables or plug-ins or other parts
of the toolkit.

In this section, you’ll first walk through the process of creating a site configuration file,
and then you’ll build the site itself.

Creating a Site Configuration File
When you create and maintain a web site using the Template Toolkit, a project configuration
file is essential for keeping templates separate from output files and also to configure the
behavior of the processor. You’ll initially use three primary directories with the toolkit:

• A source directory to hold your template source files

• An output directory to hold the final HTML pages

• A library directory to will hold common bits of code that you may use in the project

You’ll bring these in with an INCLUDE directive (and related directives), as follows:

mkdir webproject
cd webproject
mkdir source output lib

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 257

With those directories created, you can start creating your configuration file for the proj-
ect. Recall from earlier in the chapter that a sample configuration file called .ttreerc was
created when you first ran ttree. You’ll use this file as the base for this project, so copy it into
your project directory. From within the webproject directory

cp ~/.ttreerc ./project.cfg

edit the project.cfg file and add configuration options to direct ttree toward your source,
output, and library directories. Note that by default, these are placed at the bottom of the
sample file, but they are commented out. Either uncomment and edit those or add your own.
Either way, the three lines should look like this:

src = /home/youruser/webproject/source
dest = /home/youruser/webproject/output
lib = /home/youruser/webproject/lib

You can use multiple library directories by specifying each on its own lib line in the con-
figuration file.

Other default options in the configuration file include the following (note that if these are
missing, you should add them for now and tweak the configuration later when you become
more comfortable with the Template Toolkit):

print summary of what's going on
verbose

recurse into any sub-directories and process files
recurse

regexen of things that aren't templates and should be ignored
ignore = \b(CVS|RCS)\b
ignore = ^#

ditto for things that should be copied rather than processed.
copy = \.png$
copy = \.gif$

As to the first two options, verbose and recurse, I’ve always found that it’s helpful to get more
information until I’m comfortable with what’s happening in the background. The recurse
option tells the processor to look in subdirectories within your source tree for additional files
to process. This is an extremely helpful option, especially on medium- and large-sized web
sites that have multiple directories of files and images.

The ignore options set up some file types that won’t be copied from the source to the
destination directory. And speaking of copying, the copy option specifies files that should be
copied. Two types of images are included in this example. If you have image (or other) files
that should be copied from the source to the destination output directory, include them on
another copy line and note the use of regular expressions.

If you’ll use headers and footers, you can specify that those should be pre- and post-processed
with the pre_process and post_process configuration options:

pre_process = header.tt
post_process = footer.tt

CHAPTER 12 ■ THE TEMPLATE TOOLKIT258

The full configuration file, project.cfg, follows in Listing 12-8. Place this file in the
webproject directory.

Listing 12-8. Sample Project Configuration File

src = /home/youruser/webproject/source
dest = /home/youruser/webproject/output
lib = /home/youruser/webproject/lib

verbose
recurse

ignore = \b(CVS|RCS)\b
ignore = ^#

copy = \.png$
copy = \.gif$

pre_process = header.tt
post_process = footer.tt

Building the Site
Now that you’ve created both the directory structure and the configuration file, it’s time to
create a couple of web pages to be processed through the Template Toolkit. The pages you cre-
ate in this section will use the configuration file shown in the previous section, along with the
pre_process and post_process options pointing to header.tt and footer.tt, respectively.

Place the template files for this project in the webproject/source directory created earlier.
Place the header.tt and footer.tt files in the webproject/lib directory.

The content for the lib/header.tt file is as follows:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
lang="en-US" xml:lang="en-US"><head>

<title>[% template.title %]</title>
</head><body>

Please note that the bolded line of code will cause the META variable template.title to be
placed into the output. Each page has its own title in the web site. The value for this title is stored
within each page itself. Therefore, since the header file is preprocessed, the title wouldn’t be
available to the header when it is being processed. This is where the META directive comes into
play. As you’ll see within the actual page, the title variable will be defined with the META direc-
tive. This does, however, mean that the title variable must be prefixed with the template special
variable.

The lib/footer.tt file contains the following:

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 259

[% USE date(format = '%Y') -%]
<p>Copyright (c) [% date.format %] Steve Suehring</p>
</body></html>

Within the footer, the date plug-in is used. For copyright notices, only the year is necessary,
so the date format is set appropriately.

Finally, the actual page is created. This page is stored in the source directory and is called
index.html in this example. The source/index.html file contains the following:

[% META title = "Home Page" -%]
<p> Welcome to the home page </p>

Obviously, the page is quite simple in this example. Notice, however, that the title for the
page is defined and is done so with the META directive, so that the title will be available to the
preprocessed header.tt file.

With the three files created, it’s time to run ttree. You should have the following directory
and file layout:

Directory: /home/youruser/webproject
File: /home/youruser/webproject/project.cfg

Directory: /home/youruser/webproject/output

Directory: /home/youruser/webproject/source
File: /home/youruser/webproject/source/index.html

Directory: /home/youruser/webproject/lib
File: /home/youruser/webproject/lib/header.tt
File: /home/youruser/webproject/lib/footer.tt

From within the webproject directory, run ttree and point it toward your configuration
file:

ttree -f project.cfg

Here’s the output:

ttree 2.78 (Template Toolkit version 2.14)

Source: /home/suehring/webproject/source
Destination: /home/suehring/webproject/output
Include Path: [/home/suehring/webproject/lib]

Ignore: [\b(CVS|RCS)\b, ^#, \b(CVS|RCS)\b, ^#]
Copy: [\.png$, \.gif$, \.png$, \.gif$]

Accept: []
Suffix: []

+ index.html

If you run into problems, ensure your paths are correct and that you’ve placed the files in
the correct locations.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT260

The contents of output/index.html will now be as follows:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
lang="en-US" xml:lang="en-US"><head>

<title>Home Page</title>
</head><body>

<p> Welcome to the home page </p>
<p>Copyright (c) 2005 Steve Suehring</p>
</body></html>

Notice that the three files have been joined, the title called in the header but defined
within the page has been properly filled in, and the date has been placed correctly in the
footer.

Building a second page and subsequent pages gets easier, as you now have the infrastruc-
ture in place to process the templates for the project. For example, you can create a web form
using the CGI plug-in as follows:

[% META title = "Order Form" -%]
[% USE localcgi = CGI -%]
[% localcgi.start_form(action => 'order.cgi');

localcgi.textfield(name => 'username'
size => '25');

localcgi.p;
localcgi.submit(name => 'submit_user');

%]

The file is called order.html and is located in the source directory. Running ttree with
both the index.html and order.html files in place yields this output:

ttree 2.78 (Template Toolkit version 2.14)

Source: /home/suehring/webproject/source
Destination: /home/suehring/webproject/output
Include Path: [/home/suehring/webproject/lib]

Ignore: [\b(CVS|RCS)\b, ^#, \b(CVS|RCS)\b, ^#]
Copy: [\.png$, \.gif$, \.png$, \.gif$]

Accept: []
Suffix: []

+ order.html
- index.html (not modified)

Notice that the index.html file was not processed by ttree this time through because it
had not been modified since the last run of ttree. You can change this by adding the -a option
to the ttree command or by adding the all option to the configuration file for the project.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT 261

Security Considerations
For the most part, if you merely use the Template Toolkit to manage a web site by keeping com-
mon text such as headers and footers, then there is very little to worry about security-wise.
However, as mentioned throughout this chapter, the Template Toolkit is quite powerful. With
that power comes the ability to do some things that can lead to security problems. One such
problem is unauthorized information disclosure through the template. Storing items such as
database names, usernames, and passwords within template files can lead to this information
being discovered by a potential attacker. If you use advanced options, such as CGI processing,
through the Template Toolkit, you must take care to ensure that input data is properly sanitized.
Again, if the Template Toolkit is used to merely generate these pages rather than process the
input, then the risk is essentially negated.

Summary
The Template Toolkit’s unrivaled power and flexibility make it an excellent choice for manag-
ing a web site of any size. In this chapter, you learned that through the definition of both static
and dynamic variables, the use of looping and conditionals, and the large number of plug-ins,
the Template Toolkit can also make the management of a complex site rather easy. This chapter
covered several available plug-ins that really extend the usefulness of the toolkit. As you’ve seen,
the Template Toolkit can be used for much more than simple web page generation.

If this chapter has piqued your interest in the Template Toolkit, I encourage you to read the
excellent documentation available on this software. Begin with the perldoc for Template::Manual,
which will point you toward even more specific documentation for the various aspects of the
Template Toolkit.

CHAPTER 12 ■ THE TEMPLATE TOOLKIT262

263
1. Other tools to embed Perl are available as well, one of which is called Embperl.

(http://perl.apache.org/embperl).

Perl Web Sites with Mason

The Mason software program creates dynamic web sites by enabling Perl code to be inserted
into HTML.1 Programming languages such as PHP or ASP.NET operate under a similar prem-
ise. While each of these languages has its own set of advantages, neither of them are Perl. And
since this book is devoted to Perl, I’ll cover only dynamic web sites with Perl and Mason.

I use Mason for my own web site (http://www.braingia.org), and I’ve done consulting
with clients where Mason has been the recommended approach for their sites. Not only is
Mason easy to use, but it’s also powerful. Elements such as headers and footers (the text at the
top and bottom of web site pages), site maps, copyright notices, terms and conditions, contact
information, and so on—sometimes referred to collectively as the “look and feel” of a site—are
all relatively common on each page within a given site. Using Mason, developers can quickly
create, for example, a common header and footer to be used across all pages within a site.
Even though the pages are similar, however, they are not exactly the same. For example, the
titles of pages usually change from page to page. Mason enables arguments to be passed into
its components to handle such differences. As you’ll learn in the chapter, components are
central to working with Mason.

With that, it’s time to jump into a quick introduction to Mason. Then you’ll learn how to
install Mason, followed by coverage of Mason’s syntax. Finally, you’ll walk through building
a sample site using Mason.

Introducing Mason
As stated previously, Mason enables Perl code to be interspersed within HTML and other such
web languages. Though it can operate in other modes, Mason requires mod_perl to run. The
intention of the developer is to create dynamic web sites, rendered at runtime or the time of
the request/response cycle. For example, here’s a fully functional web page that could be
served with an Apache server running mod_perl and Mason:

C H A P T E R 1 3

■ ■ ■

CHAPTER 13 ■ PERL WEB SITES WITH MASON264

Figure 13-1. A Mason example

<html><head><title>Song List</title></head>
% my $song = "Driven";
% my $artist = "Rush";
<body>
<h1>Steve's Music Stream</h1>
<p>The current song playing on Steve's Apache music stream is <% $song %>
by <% $artist %>.</p>
</body>
</html>

The output from this code when viewed in a web browser looks as shown in Figure 13-1.

As you’ll learn a little later, Mason is built around an object called a component, which is
nothing more than a file that is processed by Mason. Within that file can be a line or two of
code, HTML, or something else entirely. Alternatively, a component can be a complex Perl
program. A component is essentially what you make it.

At the very top of the component hierarchy is something called the top-level component.
The top-level component is the first component called when Mason processes a request for
a page. It could be a simple HTML page; a page with some Perl code on it (like that shown in
the preceding example); or a component that calls other components, which in turn call other
components, and so on.

Mason can do far more than was shown in the previous example. For example, you can
load database queries, pass values between components, and handle pages completely dynami-
cally with Mason—the pages don’t even need to exist on the filesystem!

The rest of this chapter is devoted to showing you the basic syntax for Mason, but please
be aware that there is far more to Mason than I was able to cover in this chapter. I invite you to
supplement the material in this chapter with information from the Mason perldocs and the
Mason web site (http://www.masonhq.com).

CHAPTER 13 ■ PERL WEB SITES WITH MASON 265

Installing Mason
Mason is already included with many Linux distributions, saving the need to install it from
source. Debian, for example, includes Mason in the libhtml-mason-perl package along with
other packages containing documentation and examples. Use the package search capabilities
within your distribution to find out if Mason is available as a package with your distribution.

If Mason isn’t available with your distribution, or if you want to compile from source for
some other reason, you can download Mason from http://www.masonhq.com. Although they’re
not technically required to use Mason, you’ll need Apache and mod_perl. You could get by
without them and still use Mason, but this chapter will not cover any of those other uses. You
will also need Perl to install Mason (though I suspect that if you didn’t have Perl by now, you might
have had trouble with the previous 12 chapters!). Some additional modules are required to
install Mason, including the following:

• Class::Container

• Exception::Class

• File::Spec (this may already be included in your version of Perl)

• Params::Validate

• Scalar::Util

Optionally, you can also install the following:

• Test::More

• Cache::Cache

You can obtain these modules from your favorite CPAN mirror.

■Note Apache::Request and CGI.pm aren’t technically required to compile the Mason software, but they
are required if you’d like to follow along with the examples in this chapter, and you’ll likely need them for
programming Mason anyway. (You likely have them both already.)

Compiling Mason
Mason is downloaded as a gzipped tar archive and will have a filename like HTML-Mason-N.NN.
tar.gz, where NNN is the version number, such as 1.28. Unzip and unarchive the file:

tar -zxvf HTML-Mason-1.28.tar.gz

and change into the HTML-Mason-N.NN directory:

cd HTML-Mason-1.28

Once you’re inside the directory, run the Perl-style Makefile.PL by typing

perl Makefile.PL
This program will check for prerequisites and output the following:

Checking for Scalar::Util...ok
Checking for File::Spec...ok
Checking for CGI...ok
Checking for Cache::Cache...ok
Checking for Exception::Class...ok
Checking for Test::More...ok
Checking for Params::Validate...ok
Checking for Class::Container...ok
Checking for Apache::Request...ok
Checking if your kit is complete...
Looks good
Writing Makefile for HTML::Mason

If you’re missing any of the prerequisites, you’ll be notified and likely required to install the
missing prerequisites before continuing. If you receive a notice that the make file has been writ-
ten, as shown in the example, then you can continue the installation by typing the following:

make

Though obviously dependent on the available resources, the make process will go quickly.
At this point, you could simply install the software, but I recommend running the tests avail-
able prior to installing the software. Doing so can save headaches later if the software
mysteriously doesn’t work. Run the tests by typing

make test

The tests will run, producing output similar to the following:

PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-e" "
\$ENV{PORT}=8228; \$ENV{APACHE_DIR}=q^^; \$ENV{MASON_MAINTAINER}=0;
test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
t/01-syntax...........ok
t/02-sections.........ok
t/02a-filter..........ok
t/04-misc.............ok
t/05-request..........ok
t/06-compiler.........ok
t/06a-compiler_obj....ok
t/07-interp...........ok
t/08-ah...............skipped

all skipped: no reason given
t/09-component........ok
t/09a-comp_content....ok
t/10-cache............ok
t/10a-cache-1.0x......ok
t/11-inherit..........ok
t/12-taint............ok
t/13-errors...........ok
t/14-cgi..............ok
t/14a-fake_apache.....ok

CHAPTER 13 ■ PERL WEB SITES WITH MASON266

CHAPTER 13 ■ PERL WEB SITES WITH MASON 267

t/15-subclass.........ok
t/16-live_cgi.........skipped

all skipped: no reason given
t/17-print............ok
t/18-leak.............ok
t/19-subrequest.......ok
All tests successful, 2 tests skipped.
Files=23, Tests=393, 33 wallclock secs (15.66 cusr + 0.96 csys = 16.62
CPU)

If any of the tests fail, refer to the Mason documentation at http://www.masonhq.com. It’s
actually rather uncommon for tests to fail at this point, but it can happen.

If the tests were successful, as they were in the output shown in the example, you can
install the software. To install the software, you will likely need to be the root user. Run the
installation by typing the following:

make install

The next section guides you through the steps required to configure Mason for use with
your Apache installation.

Configuring Apache and Mason
With the help of the configuration in Apache, Mason can be automatically called to interpret
or process files of various extensions or for an entire directory or site. Apache directives are
used to load the Mason Apache module and then to configure a handler for certain files or
directories. Within the Mason-related Apache configuration you can (and likely will) use
Mason-specific configuration parameters to configure and change the behavior of Mason
when it processes your templates. A configuration for Apache might look like this:

PerlModule HTML::Mason::ApacheHandler
<FilesMatch "\.mhtml$">
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler
</FilesMatch>

This configuration would be placed within the httpd.conf file for Apache, and files with
the extension .mhtml would be processed by Mason. You could also limit this processing to the
files within a given directory, as shown here:

PerlModule HTML::Mason::ApacheHandler
<Directory /path/to/mason/files>
<FilesMatch "\.mhtml$">
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler
</FilesMatch>
</Directory>

In practice, you’ll find that it’s helpful to define certain types of files to be processed by
Mason limited to a given directory or site. For example, the configurations shown might be

placed in a <VirtualHost> directive within the Apache configuration file. Using this, you
wouldn’t have to define a special file extension for your Mason files.

Within the Mason configuration area in the Apache configuration file, you may find it
necessary to set one or more additional Mason-specific configuration parameters. These
parameters can be set within the Apache configuration file, when making a subrequest, or
within a Mason script. There are different names for the parameters based on where they are
being set. For example, a parameter would be called args_method if set within a subrequest,
but it would be called MasonArgsMethod if set within the Apache configuration file. For the pur-
poses of this section, we’ll use the name of the parameter as it would appear in the Apache
configuration file.

You can find a full list of configuration parameters on the Mason web site at http://
www.masonhq.com/docs/manual/Params.html. Some of the parameters you may find necessary
to set within the Apache configuration file include those listed in Table 13-1.

Table 13-1. Select Configuration Parameters for Use with Mason

Parameter Values Description

MasonArgsMethod mod_perl or CGI Used to set the way in which arguments from GETs
and POSTs are unpacked. The default is mod_perl.
You may need to set the value to CGI while
converting the site to work with Mason.

MasonAutoSentHeaders true or false Used to determine whether or not Mason will
automatically send HTTP headers to the client.
The default is true.

MasonCompRoot No default Used to set the default path for the component
root. The component root will be explained later.

MasonDataDir No default Used to set the directory that Mason uses to write
temporary files for some features.

MasonUseStrict true or false Used to configure whether or not the Mason files
should take advantage of the use strict pragma.
The default is true.

When using parameters within the Apache configuration file, the PerlSetVar and PerlAddVar
directives must be used. For example, to set the MasonCompRoot parameter, you would use the
following line in the Apache configuration file:

PerlSetVar MasonCompRoot /path/to/comp_root

In my own configuration, I’m running Apache within a chroot and have various virtual
hosts running on the server for which I have different configurations from the main Apache
server process. I’ve therefore set both the MasonCompRoot and MasonDataDir parameters within
the <VirtualHost> configuration on the server.

I’m now using Mason for serving every file that has an .html extension on the site, which
I configured using the <FilesMatch> directive shown earlier. However, when I initially con-
verted to Mason, I used a <FilesMatch> directive of .mhtml.

CHAPTER 13 ■ PERL WEB SITES WITH MASON268

CHAPTER 13 ■ PERL WEB SITES WITH MASON 269

I’ve also had to bring some legacy CGI scripts over to the site. In doing so, I found that
I needed to set the MasonArgsMethod to CGI, away from its default of mod_perl. I suspect (or
hope) that I’ll have time to port these scripts to mod_perl by the time you’re reading this book.

In addition to that basic configuration, I’ve also tightened the security for the site by
sending a “404: Not Found” error whenever someone tries to access one of the Mason-specific
components that I might or might not use. I accomplish this with the help of a <LocationMatch>
directive and Apache::Constants::NOT_FOUND, as directed by the perldoc for HTML::Mason::Admin.

Here is the full configuration for Mason as it appears in my httpd.conf. Your configuration
may vary from this, but my hope is to pass along some practical information about a real-world
implementation of Mason.

PerlModule HTML::Mason::ApacheHandler
<FilesMatch "\.html$">

SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler

PerlSetVar MasonCompRoot /home/suehring/www
PerlSetVar MasonDataDir /home/suehring/mason
#sws 5/27/2005
PerlSetVar MasonArgsMethod CGI

</FilesMatch>
<LocationMatch "(\.m(html|pl|ase)|dhandler|autohandler)$">

SetHandler perl-script
PerlInitHandler Apache::Constants::NOT_FOUND

</LocationMatch>

With the appropriate configuration for your Apache installation in place, you can restart
the Apache server.

Mason Syntax
It’s time to create a “Hello World” example, Mason-style. In general, I’m fed up with “Hello
World” examples, though, so I’m going to create something even more annoying: a page that
uses the <blink> HTML tag. I’ll do this by wrapping the output inside of a <%perl> block in the
page. Listing 13-1 shows the simple text for this page.

Listing 13-1. A Mason-Style Page Using <%perl> to Print a Blinking Tag

<%perl> print "<blink>This is the blinkin' example.</blink><P>\n"; </%perl>

The page can be saved within the directory you configured as the MasonCompRoot and
viewed in a web browser. When I viewed the page, I saw blinking text. It’s difficult to illustrate
blinking text in a screenshot, however, so Figure 13-2 shows the text when it appears.

As with any terse example of this nature, it only serves to show that your Mason installa-
tion is working and not much else. In addition, there are multiple ways to create the output
shown in Figure 13-2. I chose one of the more verbose ways to do it, since it provides a good
transition into some of the less verbose methods shown later in this section.

In this section, we’ll start off by examining components, and then we’ll move on to look at
request objects, handlers, and subrequests.

Components
As mentioned previously, central to working with Mason is the component object. The Mason
Developer’s Manual describes a component as “a mix of Perl and HTML” and the “basic build-
ing block and computational unit.” A component can be a portion of a page that contains
Mason sections, or it can be an entire page, or it can be anything in between. Components can
call other components, passing information between them and the current request.

The example shown in Listing 13-1 is itself a component. A slightly more complex example
is shown in Listing 13-2.

Listing 13-2. A Slightly More Complex Mason Example

% my $time = time;
The time is <% $time %>, thanks for visiting.

The results of this example appear in Figure 13-3.

CHAPTER 13 ■ PERL WEB SITES WITH MASON270

Figure 13-2. The output from the <blink> tag example

CHAPTER 13 ■ PERL WEB SITES WITH MASON 271

As you can see from Listing 13-2 and Figure 13-3, the variable $time is substituted at the
time the template is processed. Using the browser’s Reload function shows that the time keeps
changing on every refresh, unless of course you reload more than once in a second.

In Listing 13-2, you also saw another type of syntax, a single percent sign (%). A % is used to
indicate a single line of Perl code within a Masonized page. We’ll cover the syntax of components
in more detail in the next section, and then we’ll move on to look at the arguments of compo-
nents as well as return values.

Syntax
The syntax of components is fairly simple when you consider how powerful they are. Blocks of
code to be processed are indicated by a few types of delimiters, as you saw in the examples in
Listings 13-1 and 13-2. Items within <%perl> and </%perl> are evaluated as blocks of Perl. This
syntax is usually used when multiple lines of Perl are necessary. Items within <% and %> are
evaluated as single expressions. This syntax is frequently used for interpolation of variables or
single statements interspersed within the text of the web page. Finally, % is used to indicate
a single line of Perl code on a page. This syntax is frequently used with conditionals and loops.
Consider the example in Listing 13-3.

Listing 13-3. A Conditional Within a Mason Page

% my $name = "Steve";
Welcome to the page,
% if ($name eq "Steve") {
thank you for visiting again <% $name %>.

Figure 13-3. The output from Listing 13-2, which uses a slightly more complex Mason example
to process a variable

% } else {
it is nice of you to visit.
% }

The output from this example is shown in Figure 13-4.

CHAPTER 13 ■ PERL WEB SITES WITH MASON272

Since the variable was predefined as "Steve" in the example, the conditional in the if()
statement matched. If the value of the $name variable is changed, then the else will take effect.
Consider the modified code in Listing 13-4.

Listing 13-4. A Slightly Modified Conditional Within a Mason Page

% my $name = "sssSteve";
Welcome to the page,
% if ($name eq "Steve") {
thank you for visiting again <% $name %>.
% } else {
it is nice of you to visit.
% }

The result of this code is shown in Figure 13-5.

Figure 13-4. An example using a conditional

CHAPTER 13 ■ PERL WEB SITES WITH MASON 273

■Tip In practice, I use either <% and %> or a single % on each line of code when I have just a few lines to
process. I find it easier to type % on each line rather than the more formal <%perl> and </%perl>, unless
there’s another reason for using <%perl>, an example of which you’ll see later.

Four additional types of tags are used rather frequently with Mason. These types include
<& and &> to indicate another component call. Consider this akin to a function call; arguments
can be carried with the call. Another type is <%init> and </%init>, which indicate a block of
code to be processed before the main page is processed. The <%once> and </%once> tags are
used for code that should run once at component load time, such as the use pragma to import
the DBI into a namespace (use DBI;). A final type of delimiter or markup for Mason is <%args>
and </%args>, which process the arguments being passed into the component.

Other types of markup are available with Mason, but the seven tag types described in this
section are the ones you’ll likely encounter right away when getting to know Mason. Table 13-2
presents a recap of the seven frequently used Mason delimiters.

Table 13-2. Frequently Used Mason Delimiters

Delimiter Purpose

<% ... %> Evaluate statements and interpolate values inline.

% Execute single lines of Perl, conditionals, and loops.

<& ... &> Call another component.

<%args> ... </%args> Process incoming arguments to a component.

<%init> ... </%init> Process prior to the main page.

<%once> ... </%once> Process once at component initialization.

<%perl> ... </%perl> Execute multiple lines of Perl.

Figure 13-5. The modified conditional code in action

CHAPTER 13 ■ PERL WEB SITES WITH MASON274

Still other tags are available for use, such as those for initialization and cleanup. Notably,
the <%shared> tag is helpful when writing CGIs with Mason. Variables declared with <%shared>
are initialized with every request as opposed to being initialized with each component, as
you’d find with <%once>. Therefore, using <%shared> is a good approach for variable declaration
within a CGI application.

For example, when a component is initialized the first time, you’ll likely want to share the
DBI namespace for use across the component’s lifetime. However, any variables used within the
CGI should live only on a per-request basis. The code would therefore look something like this:

<%once>
use DBI;
</%once>
<%shared>
my $variable1;
my $othervariable;
</%shared>

Arguments
When you call a component with Mason, it’s common to pass one or more arguments. For
example, you might use Mason to manage common headers and footers of web pages. The
header’s HTML needs to set the page title and other parameters specific to the page being
built. When calling the component, you pass along arguments such as the title to the compo-
nent being called.

Now that I’ve tried to explain this concept in writing (perhaps with limited success) twice,
I’ll show you an example in code that may help clarify things. The example in Listing 13-5 is
pulled directly from my web site’s home page, http://www.braingia.org.

Listing 13-5. Calling a Mason Component with Arguments

<& /header.mase, title=>"Braingia.org - Steve Suehring's Home Page",maintitle=>
"Intarweb" &>

(HTML continues hereafter...)

From the example in Listing 13-5, you can see the opening tag for a component, <&, fol-
lowed by the name of the component, in this case header.mase. Next are two arguments, title
and maintitle. These arguments are then defined within the <%args> . . . </%args> section of
the file header.mase.

The header.mase file begins by declaring the arguments:

<%args>
$title
$maintitle
</%args>

The file continues with HTML and JavaScript, and eventually within the file the standard
HTML <title> . . . </title> tag is used:

<title><% $title %></title>

CHAPTER 13 ■ PERL WEB SITES WITH MASON 275

Somewhat later in the markup contained in header.mase, the $maintitle variable appears:

<%perl> unless ($maintitle eq "Intarweb") { </%perl>
Braingia.org Home /
<% $maintitle %>
<%perl> } </%perl>

Since the lines wrapped in <%perl> and </%perl> contain only one line of code, they could
have been written with a single %. However, the page source was indented for easier viewing;
therefore, because the % needs to be placed at the beginning of the line, it would have broken
the indenting. (Note that indenting is not represented in the code sample shown here.)

When this Masonized code is viewed in a web browser, it results in a page like the one
shown in Figure 13-6. As you can see from the figure, the title and maintitle have been
placed in the page.

Return Values
Mason components can also return values when called, as opposed to the normal behavior of
components to return undef. The return() function makes this possible. Using a return from
a component enables code reuse by enabling you to define commonly used functions inside
their own components. Having a component return a value is as simple as calling Perl’s stan-
dard return() function. Consider this example, which returns the temperature:

<%init>
my $temperature = 4;
return $temperature;
</%init>

Calling a component with a return value is not necessarily intuitive. Rather than calling
the component with the normal <& ... &> syntax, you’re required to call it with the soon-to-be-
introduced $m->comp('component_name') syntax. So, for example, to obtain the temperature

Figure 13-6. The Mason page when viewed in a web browser

CHAPTER 13 ■ PERL WEB SITES WITH MASON276

from the code just shown, you might save the component within a file called get_temp and
then call that component from your normal Mason component:

% my $temp = $m->comp('get_temp');

At runtime, Mason will interpret this line, call the function located in the file get_temp,
and place its return value into the $temp variable.

Request Objects
Two request objects are automatically provided within a Mason component: $r and $m. The $r
request object is the Apache request object from mod_perl. As such, the methods available
with $r when programming in a mod_perl environment are automatically sent to the compo-
nent in Mason. Both $r and $m are specific to the current request being handled by Apache.

The $m object is a Mason-specific object that gives access to various Mason parameters,
methods, and other components. You can control caching, read in files, and perform many
advanced tasks with $m. For example, you can call other components through $m with the fol-
lowing syntax:

$m->comp(component_name, arguments)

When you call a component in this way, anything returned by the component is sent to
the normal output stream. This is fine for cases where the component returns HTML, as in the
header example shown earlier. However, when a component’s output shouldn’t be sent to the
output stream, the scomp function is available. Using scomp to call a component results in its
output being sent to a string as opposed to the stream:

$m->scomp(component_name, arguments)

The Mason method abort() aborts or stops the processing of a component. This can be
helpful in cases where you want to immediately stop processing and throw an error if a certain
condition is met—for example, if a user or IP address isn’t authorized to view a document.

$m->abort()

For more information on the abort() method, see the perldoc for HTML::Mason::Exception::
Abort. For a complete description of the Apache request object, see the perldoc for HTML::Mason::
Request and refer back to Chapters 10 and 11 of this book. Additionally, Apache::Request contains
pertinent information for methods and attributes available through $r.

Handlers
Handlers are used in specific cases for executing code either prior to the component being
processed or when a component cannot be found. A handler essentially takes care of special
cases where you might want preprocessing for a component or you might want to dynamically
load a component. The two types of handlers are dhandlers and autohandlers, both of which
are discussed in the sections that follow.

CHAPTER 13 ■ PERL WEB SITES WITH MASON 277

Dhandlers
You use dhandlers, or default handlers, to create or handle requests for resources that don’t
actually exist and need to be created dynamically. For example, you might create a dynamic
web page at http://www.example.com/products/item/01. You don’t, however, actually have
a page at /products/item/01, but rather rely on a dhandler to serve the request.

When Mason receives a request for a component that doesn’t exist, it searches backward
through the path of the URI looking for a component with the name dhandler. When Mason
finds it, the dhandler component is processed and passed the name of the original component
being called. The exact argument passed to the dhandler depends on the location where Mason
finds the dhandler.

Following the example, here’s the original request, but there’s no such resource:

http://www.example.com/products/item/01

The following searches in the immediate directory:

http://www.example.com/products/item/dhandler

If no dhandler is found, go up one level and try again:

http://www.example.com/products/dhandler

If the dhandler is found, pass the argument 'item/01' to the dhandler and stop searching.
The dhandler is passed its argument as $m->dhandler_arg. This means that the component
'item/01' would be passed into the dhandler and could be loaded, say, from a database or
other place dynamically at runtime.

You can cascade or pass execution to the next dhandler by calling $m->decline. In addition,
you can use the dhandler_name parameter to change the name of the component from the default
(dhandler). Within the Apache configuration, this would be called as MasonDhandlerName and
accepts a string:

MasonDhandlerName default_handler_doc

You can also disable dhandlers entirely by setting MasonDhandlerName to an empty string:

MasonDhandlerName ""

Autohandlers
Autohandlers actually get processed prior to the top-level component and are commonly used
to set a common header or footer as well as global variables. The autohandler searches within
the directory of the current request for a component named autohandler, which is then processed
prior to processing the top-level component from the request.

Like the dhandler, the autohandler’s name can be changed from the default autohandler
to another valid name using the autohandler_name parameter. In the Apache configuration,
this parameter is known as MasonAutohandlerName.

There can be more than one autohandler. See the Mason Developer’s Manual at
http://www.masonhq.com/docs/manual/Devel.html for more information.

CHAPTER 13 ■ PERL WEB SITES WITH MASON278

Subrequests and More
When you call a component, it won’t normally go through the same steps as a top-level compo-
nent, such as some initialization and searching for handlers. If you’d like the called component
to go through those steps, you need to make it into a subrequest. Creating and executing a sub-
request is a two-step process: first create the subrequest itself and then call its exec method.
Subrequests are created with the make_subrequest method of $m, for example:

<%perl>
my $subreq = $m->make_subrequest(comp => 'component_name', args => 'arguments');
$subreq->exec;
</%perl>

In addition to subrequests, there are other features of Mason that might be helpful to
you as you learn Mason and need additional functionality. See the Mason web site at http://
www.masonhq.com for more information on these other functions. The Mason site is an excellent
resource for administrators and developers wishing to learn the ins and outs of Mason.

Building a Web Site with Mason
Both the amount and extent to which you use Mason for your web site will be determined by
the goals you have and applications you wish to deploy on the site. For example, deploying
Mason across a (mostly) static site by using common headers and footers is an excellent way
to begin learning about Mason, its syntax, and its structure. Using Mason to build a full-blown
application can, obviously, get more involved and require the use of more areas of Mason. This
section gives some hands-on Masonized web site examples.

I do assume in this section that you’ve already set up your Mason environment with Apache.
I also assume that Mason will be processing files with the .mhtml extension. This assumption
is not based on preference so much as on just choosing something and running with it for the
examples, so if you’re using .html or .anything as the standard extension for Mason, you
shouldn’t feel the need to change it.

Building a Page
Likely the easiest place to begin is to simply create a web page, which I’ll call myfirstmason.mhtml.
Inside that page, I’ll put some poorly formed HTML, place code to initialize a variable, set
a value for that variable, and output that variable to the browser along with some other text.
Listing 13-6 presents the code for myfirstmason.mhtml.

Listing 13-6. A First Mason Page

<html><head><title>My First Mason</title></head>

% my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst)
= localtime(time);

<body>

<p>This is all just plain text on my web site. Thanks for visiting

CHAPTER 13 ■ PERL WEB SITES WITH MASON 279

today.</p>

<p>Copyright (c) <% $year+1900 %>, Steve Suehring</p>

</body>
</html>

Listing 13-6 is something you might actually see in a web page footer (and you can bet
that it will show up again in this chapter). The current date and time are retrieved through the
standard Perl localtime function. The next bit of Mason code shows up with the call to $year.
Since localtime returns the number of years since 1900, it would return 105 normally, so
I added 1900 to the value to come up with the result 2005, as shown in Figure 13-7.

Creating Headers and Footers
The code in Listing 13-6 lends itself to creating a common header and footer. For example, the
copyright notice will have to be displayed on every page in the site.

For this section’s example, you’ll use three files, two of which are new. The myfirstmason.
mhtml file will be edited, and a header and footer called header.mase and footer.mase, respec-
tively, will be created. Like the .mhtml extension, the .mase extension was chosen arbitrarily,
though as you’ll recall from the earlier example of my configuration, I have Apache configured
to disallow any attempts to access a .mase file directly, for security reasons.

The contents of the header.mase file are as follows:

<html><head><title>My First Mason</title></head>

<body>

Notice that the Perl statement has been removed from the header. The footer.mase file
contains the following code:

Figure 13-7. A first Mason example, printing a copyright notice of all things

CHAPTER 13 ■ PERL WEB SITES WITH MASON280

<%args>
$year
</%args>

<p>Copyright (c) <% $year+1900 %>, Steve Suehring</p>

</body>
</html>

Within this code, you’ll notice the addition of the <%args> section. This is because the
footer will be called with an argument of the year, which will come from the localtime() func-
tion. That localtime() function is now located in the source file, myfirstmason.html, which
now looks like this:

<& header.mase &>

% my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);

<p>This is all just plain text on my web site. Thanks for visiting
today.</p>

<& footer.mase, year => $year &>

Of note in this file is that the header was called into the file with the standard <& . . . &>
tags, the Perl localtime() function was called, followed by the HTML for the page, finally fol-
lowed by the call to the footer file. The call to the footer contained an argument of the year
that corresponds to the year in the <%args> section of the footer.mase file. The results from
this page are the same as those shown in Figure 13-7.

So that was version 1 of the header and footer example. It’s barely been released when
I want to make improvements to it. For example, it’s really unnecessary to send the year as an
argument to the footer. The Perl code for the localtime() function could have just as easily
been placed directly in the footer itself. However, using <%args> is something you’ll likely be
doing a lot of when developing CGIs with Mason, so I thought it might be helpful to see it again.

Using Return Values
Another improvement I will implement is to place the localtime() function inside its own
component with a return value. This final version of the example will use the same three files:
filesheader.mase, footer.mase, and myfirstmason.mhtml. A new file will be added called
get_year (with no extension). The contents of get_year are shown in Listing 13-7.

Listing 13-7. The get_year Component

<%init>
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime(time);
return $year;
</%init>

CHAPTER 13 ■ PERL WEB SITES WITH MASON 281

Even though this function actually returns much more than just the year, the year is all
I need for the copyright and is therefore all that’s returned by this function. In practice, I’d
likely return the entire date structure as an array.

The contents of footer.mase change to remove the <%args> section and replace it with
a call to the component. The contents of footer.mase are now as follows:

% my $year = $m->comp('get_year');
<p>Copyright (c) <% $year+1900 %>, Steve Suehring</p>

</body>
</html>

The previous code could be written without the use of the temporary $year variable:

<p>Copyright (c) <% $m->comp('get_year')+1900 %>, Steve Suehring</p>

</body>
</html>

Finally, the myfirstmason.html file no longer needs to include the year argument in the
call to the footer component. The contents are now as follows:

<& header.mase &>

<p>This is all just plain text on my web site. Thanks for visiting
today.</p>

<& footer.mase &>

Security Considerations with Mason
Mason doesn’t, by itself, introduce any specific security considerations.

Summary
In this chapter you learned about Mason, a powerful dynamic templating system for Perl.
Although Mason can run in a number of environments, the environment covered in this chapter
was Apache with mod_perl. You explored the basic building block of Mason, the component,
and you learned how to call components. You also covered the various tags available for use
with Mason. You examined handlers, specifically dhandlers and autohandlers, and you learned
a bit about Mason design.

283

A P P E N D I X

■ ■ ■

Perl Basics

This appendix contains lightly edited passages from Beginning Perl, Second Edition by James
Lee, (Apress, 2004; ISBN: 1-59059-391-X). The goal is to provide you with a refresher course on
the basics of Perl. If you’re completely unfamiliar with Perl, I recommend picking up a copy of
Beginning Perl to get the most out of this book.

Our First Perl Program
Assuming that you now have a copy of Perl installed on your machine, you are ready to start
using Perl. If not, go back and follow the instructions (in Beginning Perl, Second Edition). The
next step is to write our first Perl program.

Here’s what it will look like:

#!/usr/bin/perl -w

print "Hello, world!\ n";

We highly suggest that you type this example in and try to make it work, so before we go
any further, a quick note on editors. Perl source code is just plain text and should be written
with a plain text editor rather than a word processor. Your operating system, whether Unix or
Windows, comes with a selection of text editors. You may have a favorite already, so feel free to
use it. If not, may we suggest vi (http://www.vim.org), emacs (http://www.xemacs.org), and
nedit (http://www.nedit.org). Windows provides WordPad and Notepad, but they lack many
features of modern text editors, so they should be avoided. nedit is the most WordPad- and
Notepad-like, so give it a try.

The next step is to fire up your editor of choice, type in the code shown previously, and
save it into a file named helloworld.pl in the directory we just made. Then, to execute it, type

$ perl helloworld.pl
Hello, world!
$

Congratulations! You’ve successfully written and executed your first Perl program.

APPENDIX ■ PERL BASICS284

Keywords
A keyword is a term in Perl that has a predefined meaning. One example is the term use as we
saw in the statement

use warnings;

Other types of keywords include built-in functions such as print() and control flow
constructs such as if and while. We will talk about many built-in functions and control flow
constructs in detail as we progress in our discussion of Perl.

It’s a good idea to respect keywords and not give anything else the same name as one. For
example, a little later on you’ll learn that you can create and name a variable, and that calling
your variable $print is perfectly allowable. The problem with this is that it leads to confusing
and uninformative statements like print $print. It is always a good idea to give a variable
a meaningful name, one that relates to its content in a logical manner—for example, $my_name,
@telephone_numbers, %account_info, and so on, rather than $a, @b, and %c.

Statements and Statement Blocks
If functions are the verbs of Perl, then statements are the sentences. Instead of a period,
a statement in Perl usually ends with a semicolon, as shown earlier:

print "Hello, world!\ n";

To print some more text, we can add another statement:

print "Hello, world!\ n";
print "Goodbye, world!\ n";

Escape Sequences
UTF8 gives us 65,536 characters, and ASCII gives us 256 characters, but on the average key-
board, there’s only a hundred or so keys. Even using the Shift keys, there will still be some
characters that you aren’t going to be able to type. There will also be some things that you
don’t want to stick in the middle of your program, because they would make it messy or con-
fusing. However, you’ll want to refer to some of these characters in strings that you output.
Perl provides us with mechanisms called escape sequences as an alternative way of getting to
them. You’ve already seen the use of \ n to start a new line. Table A-1 lists the more common
escape sequences.

Table A-1. Escape Sequences

Escape Sequence Meaning

\ t Tab

\ n Start a new line (usually called newline)

\ r Carriage return

\ b Back up one character (backspace)

\ a Alarm (rings the system bell)

\ x{ 1F18} Unicode character

In the last example in the table, 1F18 is a hexadecimal number referring to a character in
the Unicode character set, which runs from 0000-FFFF. As another example, \ x{ 2620} is the
Unicode character for a skull-and-crossbones!

White Space
As mentioned previously, white space is the name we give to tabs, spaces, and newlines. Perl is
very flexible about where you put white space in your program. You’ve already seen that you’re
free to use indentation to help show the structure of blocks. You don’t need to use any white
space at all, if you don’t want to. If you’d prefer, your programs can all look like this:

print"Top level\ n";{ print"2nd level\ n";{ print"3rd level\ n";}
print"Where are we?";}

This is considered a bad idea. White space is another tool we have to make our programs
more understandable; let’s use it as such.

Types of Data
A lot of programming jargon is about familiar words in an unfamiliar context. You’ve already
seen a string, which was a series of characters. You could also describe that string as a scalar
literal constant. What does that mean?

By calling a value a scalar, you’re describing the type of data it contains. If you remember
your math (and even if you don’t), a scalar is a plain, simple, one-dimensional value. In math,
the word is used to distinguish it from a vector, which is expressed as several numbers. Velocity,
for example, has a pair of coordinates (speed and direction), and so must be a vector. In Perl,
a scalar is the fundamental, basic unit of data of which there are two kinds: numbers and
strings.

A literal is value that never changes. The value 5 is a scalar literal—and is literally 5; it can
never be 4. Perl has three types of scalar literals: integers (such as 5), floating-point numbers
(like 3.14159), and strings (for example, “hello, world”). To put it another way, a literal is a con-
stant—it never changes, as opposed to a variable, which is a piece of memory that can hold
a scalar value. Variables are so named because the value stored within them can vary. For
instance, $number can be assigned 5, and then later can be changed to the value 6. We will talk
more about variables later in this appendix.

Numbers
There are two types of numbers that we’re interested in as Perl programmers: integers and
floating-point numbers. The latter we’ll come to in a minute, but let’s work a bit with integers
right now. Integers are whole numbers with no numbers after the decimal point, such as 42,
–1, or 10. The following program prints a couple of integer literals in Perl:

#!/usr/bin/perl -w
number1.pl

print 25, -4;

APPENDIX ■ PERL BASICS 285

$ perl number1.pl
25-4$

Well, that’s what we see, but it’s not exactly what we want. Fortunately, this is pretty easy
to fix. First, we didn’t tell Perl to separate the numbers with a space, and second, we didn’t tell
it to put a new line on the end. Let’s change the program so it does that:

#!/usr/bin/perl -w
number2.pl

print 25, " ", -4, "\ n";

This will do what we were thinking of:

$ perl number2.pl
25 -4
$

For the purpose of human readability, we often write large integers such as 10000000 by
splitting up the number with commas: 10,000,000. This is sometimes known as chunking.
While we might write 10 million with a comma if we wrote a check for that amount, don’t use
the comma to chunk in a Perl program. Instead, use the underscore: 10_000_000. Change the
program to look like the following:

#!/usr/bin/perl -w
number3.pl

print 25_000_000, " ", -4, "\ n";

Notice that those underscores don’t appear in the output:

$ perl number3.pl
25000000 –4
$

As well as integers, there’s another type of number: floating-point numbers. These contain
everything else, such as 0.5, –0.01333, and 1.1.

Note that floating-point numbers are accurate to a certain number of digits. For instance,
the number 15.39 may in fact be stored in memory as 15.3899999999999. This is accurate enough
for most scientists, so it will have to be for us programmers as well.

Here is an example of printing the approximate value of pi:

#!/usr/bin/perl -w
number4.pl

print "pi is approximately: ", 3.14159, "\ n";

Executing this program produces the following result:

$ perl number4.pl
pi is approximately: 3.14159
$

APPENDIX ■ PERL BASICS286

Binary, Hexadecimal, and Octal Numbers
We can express numbers as binary, hexadecimal, or octal numbers in our programs. Let’s look
at a program to demonstrate how we use the various number systems. Type in the following
code, and save it as goodnums.pl:

#!/usr/bin/perl -w
goodnums.pl

print 255, "\ n";
print 0377, "\ n";
print 0b11111111, "\ n";
print 0xFF, "\ n";

All of these are representations of the number 255, and accordingly, we get the following
output:

$ perl goodnums.pl
255
255
255
255
$

When Perl reads this program, it reads and understands numbers in any of the allowed
number systems: 0 for octal, 0b for binary, and 0x for hex.

What happens, you might ask, if you specify a number in the wrong system? Well, let’s try
it out. Edit goodnums.pl to give a new program, badnums.pl, that looks like this:

#!/usr/bin/perl -w
badnums.pl

print 255, "\ n";
print 0378, "\ n";
print 0b11111112, "\ n";
print 0xFG, "\ n";

Since octal digits only run from 0 to 7, binary digits from 0 to 1, and hex digits from 0 to F,
none of the last three lines make any sense. Let’s see what Perl makes of it:

$ perl badnums.pl
Bareword found where operator expected at badnums.pl line 7, near "0xFG"

(Missing operator before G?)
Illegal octal digit '8' at badnums.pl line 5, at end of line
Illegal binary digit '2' at badnums.pl line 6, at end of line
syntax error at badnums.pl line 7, near "0xFG"
Execution of badnums.pl aborted due to compilation errors.
$

Now, let’s match those errors up with the relevant lines:

Illegal octal digit '8' at badnums.pl line 5, at end of line

APPENDIX ■ PERL BASICS 287

And line 5 is

print 0378, "\ n";

As you can see, Perl thought it was dealing with an octal number, but then along came an
8, which stopped making sense, so Perl quite rightly complained. The same thing happened
on the next line:

Illegal binary digit '2' at badnums.pl line 6, at end of line

And line 4 is

print 0b11111112, "\ n";

The problem with the next line is even bigger:

Bareword found where operator expected at badnums.pl line 7, near "0xFG"
(Missing operator before G?)

syntax error at badnums.pl line 7, near "0xFG"

The line starting “Bareword” is a warning (since we are using the -w option). Then it is fol-
lowed by a syntax error. A bareword is a series of characters outside of a string that Perl doesn’t
recognize. The word could mean a number of things, and Perl is usually quite good about
knowing what you mean. In this case, the bareword was G: Perl had understood 0xF, but
couldn’t see how the G fit in. We might have wanted an operator do something with it, but
there was no operator there. In the end, Perl gave us a syntax error, which is the equivalent of
it giving up and saying, “How do you expect me to understand this?”

Strings
The other type of scalar available to us is the string, and you’ve already seen a few examples of
them. Earlier in the appendix, you met the string "Hello, world!\ n". A string is a series of
characters surrounded by some sort of quotation marks. Strings can contain ASCII (or Uni-
code) data and escape sequences such as the \ n of our example, and there is no maximum
length restriction on a string imposed by Perl. Practically speaking, there is a limit imposed by
the amount of memory in your computer, but it’s quite hard to hit.

Single- vs. Double-Quoted Strings
The quotation marks you choose for your string are significant. So far you’ve only seen
double-quoted strings, like this: "Hello, world!\ n". There is another type of string—one that
has been single-quoted. Predictably, they are surrounded by single quotes: ''. The important
difference is that no processing is done within single-quoted strings, except on \ \ and \ '.
You’ll also see later that variable names inside double-quoted strings are replaced by their
contents, whereas single-quoted strings treat them as ordinary text. You call both these types
of processing interpolation, and say that single-quoted strings are not interpolated.

Consider the following program, bearing in mind that \ t is the escape sequence that
represents a tab.

#!/usr/bin/perl -w
quotes.pl

APPENDIX ■ PERL BASICS288

print '\ tThis is a single-quoted string.\ n';
print "\ tThis is a double-quoted string.\ n";

The double-quoted string will have its escape sequences processed, and the single-
quoted string will not. The output is

$ perl quotes.pl
\ tThis is a single quoted string.\ n This is a double-quoted string.
$

What do we do if we want to have a backslash in a string? This is a common concern for
Windows users, as a Windows path looks something like this: C:\ WINNT\ Profiles\. . .. In
a double-quoted string, a backslash will start an escape sequence, which is not what we want
it to do.

There is, of course, more than one way to do it. We can either use a single-quoted string,
as shown previously, or we can escape the backslash. One principle that you’ll see often in
Perl, and especially when you get to regular expressions, is that you can use a backslash to
turn off any special effect a character may have. This operation is called escaping or, more
commonly, backwhacking.

In this case, we want to turn off the special effect a backslash has, and so we escape it:

#!/usr/bin/perl -w
quotes2.pl

print "C:\ \ WINNT\ \ Profiles\ \ \ n";
print 'C:\ WINNT\ Profiles\ ', "\ n";

This prints the following:

$ perl quotes2.pl
C:\ WINNT\ Profiles\
C:\ WINNT\ Profiles\
$

Aha! Some of you may have gotten this message instead:

Can't find string terminator " ' " anywhere before EOF at quotes2.pl line 5.

The reason for this is that you probably left out the space character in line 5 before the
second single quote. Remember that \ ' tells Perl to escape the single quote, and so it merrily
heads off to look for the next quote, which of course is not there. Try this program to see how
Perl treats these special cases:

#!/usr/bin/perl -w
aside1.pl

print 'ex\ \ er\ \ ' , ' ci\ ' se\ '' , "\ n";

The output you get this time is

$ perl aside1.pl
ex\ er\ ci' se'
$

APPENDIX ■ PERL BASICS 289

Can you see how Perl did this? Well, we simply escaped the backslashes and single quotes.
It will help you to sort out what is happening if you look at each element individually. Remem-
ber, there are three arguments in this example. Don’t let all the quotes confuse you.

Actually, there’s an altogether sneakier way of doing it. Internally, Windows allows you to
separate paths in the Unix style with a forward slash, instead of a backslash. If you’re referring
to directories in Perl on Windows, you may find it easier to use C:/WINNT/Profiles/ instead.
This allows you to get the variable interpolation of double-quoted strings without the “leaning
toothpick syndrome” of multiple backslashes.

So much for backslashes—what about quotation marks? The trick is making sure Perl
knows where the end of the string is. Naturally, there’s no problem with putting single quotes
inside a double-quoted string, or vice versa:

#!/usr/bin/perl -w
quotes3.pl

print "It's as easy as that.\ n";
print '"Stop," he cried.', "\ n";

This will produce the quotation marks in the right places:

$ perl quotes3.pl
It's as easy as that.
"Stop," he cried.
$

The trick comes when we want to have double quotes inside a double-quoted string or
single quotes inside a single-quoted string. As you might have guessed, though, the solution is
to escape the quotes on the inside. Suppose we want to print out the following quote, includ-
ing both sets of quotation marks:

'"Hi," said Jack. "Have you read Slashdot today?"'

Here’s a way of doing it with a double-quoted string:

#!/usr/bin/perl -w
quotes4.pl

print "'\ "Hi,\ " said Jack. \ "Have you read Slashdot today?\ "'\ n";

Now see if you can modify this to make it a single-quoted string—don’t forget that \ n
needs to go in separate double quotes to make it interpolate.

q// and qq//
It would be nice if you could select a completely different set of quotes so that there would be
no ambiguity and no need to escape any quotes inside the text. The first operators we’re going
to meet are the quote-like operators that do this for us. They’re written as q// and qq//, the
first acting like a single-quoted string, and the second like a double-quoted string. Now
instead of the preceding, we can write

#!/usr/bin/perl -w

APPENDIX ■ PERL BASICS290

quotes5.pl

print qq/'"Hi," said Jack. "Have you read Slashdot today?"'\ n/;

Alternative Delimiters

That’s all very well, of course, until we want a / in the string. Suppose we want to replace
“Slashdot” with “/.”—now we’re back where we started, having to escape things again.
Thankfully, Perl allows us to choose our own delimiters so we don’t have to stick with //. Any
nonalphanumeric (that is, nonalphabetic and nonnumeric) character can be used as a delim-
iter, provided it’s the same on both sides of the text. Furthermore, you can use { }, [], (), and <>
as left and right delimiters. Here are a few ways of doing the print qq/.../;, all of which have
the same effect:

#!/usr/bin/perl -w
quotes6.pl

print qq|'"Hi," said Jack. "Have you read /. today?"'\ n|;
print qq#'"Hi," said Jack. "Have you read /. today?"'\ n#;
print qq('"Hi," said Jack. "Have you read /. today?"'\ n);
print qq<'"Hi," said Jack. "Have you read /. today?"'\ n>;

You’ll see more of these alternative delimiters when you start working with regular expres-
sions.

Here-Documents
There’s one final way of specifying a string: by means of a here-document. This idea was taken
from the Unix shell, and it works on any platform. Effectively, it means that you can write
a large amount of text within your program, and it will be treated as a string provided it is
identified correctly. Here’s an example:

#!/usr/bin/perl -w
heredoc.pl

print <<EOF;

This is a here-document. It starts on the line after the two arrows,
and it ends when the text following the arrows is found at the beginning
of a line, like this:

EOF

A here-document must start with << and then a label. The label can be anything, but is
traditionally EOF (end of file) or EOT (end of text). The label must immediately follow the arrows
with no spaces between, unless the same number of spaces precedes the end marker. It ends
when the label is found at the beginning of a line. In our case, the semicolon does not form
part of the label, because it marks the end of the print() function call.

APPENDIX ■ PERL BASICS 291

By default, a here-document works like a double-quoted string. In order for it to work like
a single-quoted string, surround the label in single quotes. This will become important when
variable interpolation comes into play, as you’ll see later on.

Converting Between Numbers and Strings
Perl treats numbers and strings on an equal footing, and where necessary, Perl converts
between strings, integers, and floating-point numbers behind the scenes. There is a special
term for this: automatic conversion of scalars. This means that you don’t have to worry about
making the conversions yourself, like you do in other languages. If you have a string literal
"0.25" and multiply it by 4, Perl treats it as a number and gives you the expected answer, 1. For
example:

#!/usr/bin/perl -w
autoconvert.pl

print "0.25" * 4, "\ n";

The asterisk (*) is the multiplication operator. All of Perl’s operators, including this one,
are discussed in the next section.

There is, however, one area where this automatic conversion does not take place. Octal,
hex, and binary numbers in string literals or strings stored in variables don’t get converted
automatically.

#!/usr/bin/perl -w
octhex1.pl

print "0x30\ n";
print "030\ n";

gives you

$ perl octhex1.pl
0x30
030
$

If you ever find yourself with a string containing a hex or octal value that you need to con-
vert into a number, you can use the hex() or oct() functions accordingly:

#!/usr/bin/perl -w
octhex2.pl

print hex("0x30"), "\ n";
print oct("030"), "\ n";

This will now produce the expected answers, 48 and 24. Note that for hex() or oct(), the
prefix 0x or 0, respectively, is not required. If you know that what you have is definitely sup-
posed to be a hex or octal number, then hex(30) and oct(30) will produce the preceding
results. As you can see from that, the string "30" and the number 30 are treated as the same.

APPENDIX ■ PERL BASICS292

Furthermore, these functions will stop reading when they get to a digit that doesn’t make
sense in that number system:

#!/usr/bin/perl -w
octhex3.pl

print hex("FFG"), "\ n";
print oct("178"), "\ n";

These will stop at FF and 17, respectively, and convert to 255 and 15. Perl will warn you,
though, since those are illegal characters in hex and octal numbers.

What about binary numbers? Well, there’s no corresponding bin() function, but there is
actually a little trick here. If you have the correct prefix in place for any of the number systems
(0, 0b, or 0x), you can use oct() to convert it to decimal. For example, print oct("0b11010")
prints 26.

Operators
Now that you know how to specify strings and numbers, let’s see what you can do with them.
The majority of the things we’ll be looking at here are numeric operators (operators that act
on and produce numbers) like plus and minus, which take two numbers as arguments, called
operands, and add or subtract them. There aren’t as many string operators, but there are a lot
of string functions. Perl doesn’t draw a very strong distinction between functions and opera-
tors, but the main difference between the two is that operators tend to go in the middle of
their arguments—for example, 2 + 2. Functions go before their arguments and have them
separated by commas. Both of them take arguments, do something with them, and produce
a new value; we generally say they return a value, or evaluate to a value. Let’s take a look.

Numeric Operators
The numeric operators take at least one number as an argument, and evaluate to another
number. Of course, because Perl automatically converts between strings and numbers, the
arguments may appear as string literals or come from strings in variables. We’ll group these
operators into three types: arithmetic operators, bitwise operators, and logic operators.

Arithmetic Operators
The arithmetic operators are those that deal with basic mathematics like adding, subtracting,
multiplying, dividing, and so on. To add two numbers together, we would write something like
this:

#!/usr/bin/perl -w
arithop1.pl

print 69 + 118, "\ n";

And, of course, we would see the answer 187. Subtracting numbers is easy too, and we can
subtract at the same time:

APPENDIX ■ PERL BASICS 293

#!/usr/bin/perl -w
arithop2.pl

print "21 from 25 is: ", 25 - 21, "\ n";
print "4 + 13 - 7 is: ", 4 + 13 - 7, "\ n";

$ perl arithop2.pl
21 from 25 is: 4
4 + 13 - 7 is: 10
$

Our next set of operators (multiplying and dividing) is where it gets interesting. We use
the * and / operators to multiply and divide, respectively.

#!/usr/bin/perl -w
arithop3.pl

print "7 times 15 is ", 7 * 15, "\ n";
print "249 divided by 3 is ", 249 / 3, "\ n";

The fun comes when you want to multiply something and then add something, or add
and then divide. Here’s an example of the problem:

#!/usr/bin/perl -w
arithop4.pl

print 3 + 7 * 15, "\ n";

This could mean one of two things: either Perl must add the 3 and the 7, and then multi-
ply by 15, or multiply 7 and 15 first, and then add. Which does Perl do? Try it and see . . .

Perl should have given you 108, meaning it did the multiplication first. The order in which
Perl performs operations is called operator precedence. Multiply and divide have a higher
precedence than add and subtract, and so they get performed first. We can start to draw up
a list of precedence as follows:

* /

+ -

To force Perl to perform an operation of lower precedence first, we need to use parenthe-
ses, like so:

#!/usr/bin/perl -w
arithop5.pl

print (3 + 7) * 15, "\ n";

Unfortunately, if you run that, you’ll get a warning and 10 is printed. What happened? The
problem is that print() is a function and the parentheses around 3 + 7 are treated as the only
argument to print().

APPENDIX ■ PERL BASICS294

print() as an operator takes a list of arguments, performs an operation (printing them to
the screen), and returns a 1 if it succeeds, or no value if it does not. Perl calculated 3 plus 7,
printed the result, and then multiplied the result of the returned value (1) by 15, throwing
away the final result of 15.

To get what we actually want, then, we need another set of parentheses:

#!/usr/bin/perl -w
arithop6.pl

print((3 + 7) * 15, "\ n");

This now gives us the correct answer, 150, and we can put another entry in our list of
precedence:

List operators

* /

+ -

Next we have the exponentiation operator, **, which simply raises one number to the
power of another—squaring, cubing, and so on. Here’s an example of some exponentiation:

#!/usr/bin/perl -w
arithop7.pl

print 2**4, " ", 3**5, " ", -2**4, "\ n";

That’s 2*2*2*2, 3*3*3*3*3, and –2*–2*–2*–2. Or is it?
The output we get is

$ perl arithop7.pl
16 243 -16
$

Hmm, the first two look OK, but the last one’s a bit wrong: –2 to the fourth power should
be positive. Again, it’s a precedence issue. Turning a number into a negative number requires
an operator, the unary minus operator. It’s called “unary” because unlike the ordinary minus
operator, it only takes one argument. Although unary minus has a higher precedence than
multiply and divide, it has a lower precedence than exponentiation. What’s actually happen-
ing, then, is -(2**4) instead of (-2)**4. Let’s put these two operators in our list of precedence
as well:

List operators

**

Unary minus

* /

+ -

APPENDIX ■ PERL BASICS 295

The last arithmetic operator remainder, or modulo operator. This calculates the remain-
der when one number divides another. For example, 6 divides into 15 twice, with a remainder
of 3, as our next program will confirm:

#!/usr/bin/perl -w
arithop8.pl

print "15 divided by 6 is exactly ", 15 / 6, "\ n";
print "That's a remainder of ", 15 % 6, "\ n";

$ perl arithop8.pl
15 divided by 6 is exactly 2.5
That's a remainder of 3
$

The modulo operator has the same precedence as multiply and divide.

Bitwise Operators
Up to this point, the operators worked on numbers in the way we think of them. However, as
we already know, computers don’t see numbers the same as we do; they see them as a string of
bits. These next few operators perform operations on numbers one bit at a time—that’s why
we call them bitwise operators. These aren’t used quite so much in Perl as in other languages,
but we’ll see them when dealing with things like low-level file access.

First, let’s have a look at the kind of numbers we’re going to use in this section, just so we
get used to them:

• 0 in binary is 0, but let’s write it as 8 bits: 00000000.

• 51 in binary is 00110011.

• 85 in binary is 01010101.

• 170 in binary is 10101010.

• 204 in binary is 11001100.

• 255 in binary is 11111111.

Does it surprise you that 10101010 (170) is twice as much as 01010101 (85)? It shouldn’t—
when we multiply a number by 10 in base 10, all we do is slap a 0 on the end, so 21 becomes
210. Similarly, to multiply a number by 2 in base 2, we do exactly the same.

People think of bitwise operators as working from right to left; the rightmost bit is called
the least significant bit and the leftmost is called the most significant bit.

The AND Operator

The easiest bitwise operator to fathom is called the AND operator, and is written &. This com-
pares pairs of bits as follows:

• 1 and 1 gives 1.

• 1 and 0 gives 0.

APPENDIX ■ PERL BASICS296

• 0 and 1 gives 0.

• 0 and 0 gives 0.

For example, 51 & 85 looks like this:

51 00110011
85 01010101

17 00010001

Sure enough, if we ask Perl the following:

#!/usr/bin/perl -w
bitop1.pl

print "51 ANDed with 85 gives us ", 51 & 85, "\ n";

it will tell us the answer is 17. Notice that since we’re comparing one pair of bits at a time, it
doesn’t really matter which way around the arguments go: 51 & 85 is exactly the same as 85 & 51.
Operators with this property are called associative operators. Addition (+) and multiplication
(*) are also associative: 5 * 12 produces the same result as 12 * 5. Subtraction (–) and division
(/) are not associative: 5 – 12 does not produce the same result as 12 – 5.

Here’s another example—look at the bits, and see what you get:

51 00110011
170 10101010

34 00100010

The OR Operator

As well as checking whether the first and the second bits are 1, we can check whether one or
another is 1, the OR operator in Perl is |. This is how we would calculate 204 | 85:

204 11001100
85 01010101

221 11011101

Now we produce 0s only if both the bits are 0; if either or both are 1, we produce a 1. As
a quick rule of thumb, X & Y will always be smaller or equal to the smallest value of X and Y,
and X | Y will be bigger than or equal to the largest value of X or Y.

The XOR Operator

What if you really want to know if one or the other, but not both, are 1? For this, you need the
exclusive or (XOR) operator, written as the ^ operator:

204 11001100
170 10101010

102 01100110

APPENDIX ■ PERL BASICS 297

The NOT Operator

Finally, you can flip the number completely, and replace all the 1s by 0s and vice versa. This is
done with the NOT, or ~, operator:

85 01010101
170 10101010

Let’s see, however, what happens when we try this in Perl:

#!/usr/bin/perl -w
bitop2.pl

print "NOT 85 is ", ~85, "\ n";

Depending on the computer, the answer might be

$ perl bitop2.pl
NOT 85 is 4294967210
$

Your answer might be different, and we’ll explain why in a second.
Why is it so big? Well, let’s look at that number in binary to see if we can find a clue as to

what’s going on:

4294697210 11111111111111111111111110101010

Aha! The last part is right, but it’s a lot wider than we’re used to. That’s because the previ-
ous examples only used 8 bits across, whereas many computers store integers as 32 bits across,
so what’s actually happened is this:

85 00000000000000000000000001010101
4294697210 11111111111111111111111110101010

If you get a much bigger number, it’s because your computer represents numbers internally
with 64 bits instead of 32, and Perl has been configured to take advantage of this.

Truth and Falsehood
True and false are important in Perl. In Perl, false is defined as

• 0

• "0"

• "" (also known as the “empty string”)

• Undefined

• Empty list (This is discussed in detail in Chapter 4 of Beginning Perl.)

Later, we will want to perform actions based on whether something is true or false, like if
one number is bigger than another, or unless a problem has occurred, or while there is data
left to examine. We will use comparison operators to evaluate whether these things are true or
false so that we can make decisions based on them.

APPENDIX ■ PERL BASICS298

Some programming languages represent false as 0 and true as 1, and this allows us to use
operators very similar to those bitwise operators we’ve just met to combine our comparisons,
and to say “if this or this is true,” “if this is not true,” and so on. The idea of combining values
that represent truth and falsehood is called Boolean logic, after George Boole, who invented
the concept in 1847, and we call the operators that do the combining Boolean operators.

Comparing Numbers for Equality

The first simple comparison operator is ==. Two equals signs tells Perl to “return true if the two
numeric arguments are equal.” If they’re not equal, return false. Boolean values of truth and
falsehood aren’t very exciting to look at, but let’s see them anyway:

#!/usr/bin/perl -w
bool1.pl

print "Is two equal to four? ", 2 == 4, "\ n";
print "OK, then, is six equal to six? ", 6 == 6, "\ n";

This will produce

$ perl bool1.pl
Is two equal to four?
OK, then, is six equal to six? 1
$

This output shows that in Perl, operators that evaluate to false evaluate to the empty
string ("") and when true evaluate to 1.

The obvious counterpart to testing whether things are equal is testing whether they’re not
equal, and the way we do this is with the != operator. Note that there’s only one = this time;
we’ll find out later why there had to be two before.

#!/usr/bin/perl -w
bool2.pl

print "So, two isn't equal to four? ", 2 != 4, "\ n";

$ perl bool2.pl
So, two isn't equal to four? 1
$

There you have it, irrefutable proof that 2 is not 4. Good.

Comparing Numbers for Inequality

So much for equality; let’s check if one thing is bigger than another. Just like in mathematics,
we use the greater-than and less-than signs to do this: < and >.

#!/usr/bin/perl -w
bool3.pl

print "Five is more than six? ", 5 > 6, "\ n";

APPENDIX ■ PERL BASICS 299

print "Seven is less than sixteen? ", 7 < 16, "\ n";
print "Two is equal to two? ", 2 == 2, "\ n";
print "One is more than one? ", 1 > 1, "\ n";
print "Six is not equal to seven? ", 6 != 7, "\ n";

The results should hopefully not be very new to you:

$ perl bool3.pl
Five is more than six?
Seven is less than sixteen? 1
Two is equal to two? 1
One is more than one?
Six is not equal to seven? 1
$

Let’s have a look at one last pair of comparisons. We can check greater-than-or-equal-to
and less-than-or-equal-to with the >= and <= operators, respectively.

#!/usr/bin/perl -w
bool4.pl

print "Seven is less than or equal to sixteen? ", 7 <= 16, "\ n";
print "Two is more than or equal to two? ", 2 >= 2, "\ n";

As expected, Perl faithfully prints out

$ perl bool4.pl
Seven is less than or equal to sixteen? 1
Two is more than or equal to two? 1
$

There’s also a special operator that isn’t really a Boolean comparison because it doesn’t
give us a true-or-false value; instead it returns 0 if the two are equal, –1 if the right-hand side
is_ bigger, and 1 if the left-hand side is bigger. It is denoted by <=>.

#!/usr/bin/perl -w
bool5.pl

print "Compare six and nine? ", 6 <=> 9, "\ n";
print "Compare seven and seven? ", 7 <=> 7, "\ n";
print "Compare eight and four? ", 8 <=> 4, "\ n";

gives us

$ perl bool5.pl
Compare six and nine? -1
Compare seven and seven? 0
Compare eight and four? 1
$

The <=> operator is also known as the spaceship operator or the shuttle operator due to its
shape.

APPENDIX ■ PERL BASICS300

We’ll see this operator used when we look at sorting things, where we have to know
whether something goes before, after, or in the same place as something else.

Boolean Operators
As well as being able to evaluate the truth and falsehood of some statements, we can also
combine such statements. For example, we may want to do something if one number is bigger
than another and another two numbers are the same. The combining is done in a very similar
manner to the bitwise operators we saw earlier. We can ask if one value and another value are
both true, or if one value or another value are true, and so on.

The operators even resemble the bitwise operators. To ask if both truth values are true, we
would use && instead of &.

So, to test whether 6 is more than 3 and 12 is more than 4, we can write

6 > 3 && 12 > 4

To test if 9 is more than 7 or 8 is less than 6, we use the doubled form of the | operator, ||:

9 > 7 || 6 > 8

To negate the sense of a test, however, use the slightly different operator !. This has
a higher precedence than the comparison operators, so use parentheses. For example, this
tests whether 2 is not more than 3:

!(2>3)

while this one tests whether !2 is more than 3:

!2>3

2 is a true value. !2 is therefore a false value, which gets converted to 0 when we do a numeric
comparison. We’re actually testing if 0 is more than 3, which has the opposite effect to what we
wanted.

Instead of those forms, &&, ||, and !, we can also use the slightly easier-to-read versions,
AND, OR, and NOT. There’s also XOR, for exclusive or (one or the other but not both are true),
which doesn’t have a symbolic form. However, you need to be careful about precedence again:

#!/usr/bin/perl -w
bool6.pl

print "Test one: ", 6 > 3 && 3 > 4, "\ n";
print "Test two: ", 6 > 3 and 3 > 4, "\ n";

This prints, somewhat surprisingly, the following:

$ perl bool6.pl
Useless use of a constant in void context at bool6.pl line 5.
Test one:
Test two: 1$

We can tell from the presence of the warning about line 5 and from the position of the
prompt that something is amiss (or least Unix users can—Windows users need to be a bit
more alert since Windows automatically adds a newline character at the end of the program so

APPENDIX ■ PERL BASICS 301

the system prompt will be on the next line, but the blank line that is expected will not be there).
Notice the second newline did not get printed. The trouble is, and has a lower precedence
than &&. What has actually happened is this:

print("Test two: ", 6 > 3) and (3 > 4, "\ n");

Now, 6 is more than 3, so that returned 1, print() then returned 1, and the rest was irrelevant.

String Operators
After that lot, there are surprisingly few string operators. Actually, for the moment, we’re only
going to look at two.

The first one is the concatenation operator, which glues two strings together into one.
Instead of using this:

print "Print ", "several ", "strings ", "here", "\ n";

we could use this:

print "Print " . "one ". "string " . "here" . "\ n";

As it happens, printing several strings is slightly more efficient, but there will be times you
really do need to combine strings together, especially if you’re putting them into variables.

What happens if we try and join a number to a string? The number is evaluated and then
converted:

#!/usr/bin/perl -w
string1.pl

print "Four sevens are ". 4*7 ."\ n";

which tells us, reassuringly, that

$ perl string1.pl
Four sevens are 28
$

The other string operator is the repetition operator, marked with an x. This repeats
a string a given number of times:

#!/usr/bin/perl -w
string2.pl

print "GO! " x 3, "\ n";

will print

$ perl string2.pl
GO! GO! GO!
$

We can, of course, use it in conjunction with concatenation. Its precedence is higher than
the concatenation operator’s, as we can easily see for ourselves:

APPENDIX ■ PERL BASICS302

#!/usr/bin/perl -w
string3.pl

print "Ba" . "na" x 4 ,"\ n";

On running this, we’ll get

$ perl string3.pl
Banananana
$

In this case, the repetition is done first (“nananana”) and then it is concatenated with the
“Ba”. The precedence of the repetition operator is the same as the arithmetic operators, so if
you’re working out how many times to repeat something, you’re going to need parentheses:

#!/usr/bin/perl -w
string4.pl

print "Ba" . "na" x 4*3 ,"\ n";
print "Ba" . "na" x (4*3) ,"\ n";

Compare the preceding code with this:

$ perl string4.pl
Argument "nananana" isn't numeric in multiplication (*) at string4.pl line 4.
Ba0
Banananananananananananana
$

Why was the first one Ba0? The first thing was the repetition, giving us “nananana”. Then
the multiplication—what’s “nananana” times 3? When Perl converts a string to a number, it
takes any spaces, an optional minus sign, and then as many digits as it can from the beginning
of the string, and ignores everything else. Since there were no digits here, the number value of
“nananana” was 0. Also note that if the string that is converted to a number contains no numeric
characters, Perl will warn you about it, as shown previously.

That 0 was then multiplied by 3, to give 0. Finally, the 0 was turned back into a string to be
concatenated onto the “Ba”.

Here is an example showing how strings automatically convert to numbers by adding 0 to
them:

#!/usr/bin/perl -w
str2num.pl

print "12 monkeys" + 0, "\ n";
print "Eleven to fly" + 0, "\ n";
print "UB40" + 0, "\ n";
print "-20 10" + 0, "\ n";
print "0x30" + 0, "\ n";

You get a warning for each line saying that the strings aren’t “numeric in addition (+),” but
what can be converted is as follows:

APPENDIX ■ PERL BASICS 303

$ perl str2num.pl
Argument "12 monkeys" isn't numeric in addition (+) at str2num.pl line 4.
Argument "Eleven to fly" isn't numeric in addition (+) at str2num.pl line 5.
Argument "UB40" isn't numeric in addition (+) at str2num.pl line 6.
Argument "-20 10" isn't numeric in addition (+) at str2num.pl line 7.
Argument "0x30" isn't numeric in addition (+) at str2num.pl line 8.
12
0
0
-20
0
$

Notice how for each of these strings, when converted to numeric values, Perl complains
that the string is not numeric. This happens because the string is not a simple numeric value.
But also note that Perl does convert the strings to numbers (in the case of three of the strings,
the value is 0).

Our first string, "12 monkeys", did pretty well. Perl understood the 12, and stopped after
that. The next one was not so brilliant—English words don’t get converted to numbers. Our
third string was also a nonstarter, as Perl only looks for a number at the beginning of the
string. If there’s something there that isn’t a number, it’s evaluated as a 0. Similarly, Perl only
looks for the first number in the string. Any numbers after that are discarded. Finally, Perl
doesn’t convert binary, hex, or octal to decimal when it’s stringifying a number, so you have to
use the hex() or oct() functions to do that. On our last effort, Perl stopped at the x, returning
0. If we had an octal number, such as 030, that would be treated as the decimal number 30.

Therefore, conversion from strings to numbers can be summed up with these rules:

• A string that is purely a number is automatically converted to the number (“21.42” is
converted to 21.42).

• Leading white space is ignored (“ 12” is converted to 12).

• Trailing nonnumerics are discarded (“12perl” is converted to 12).

• Strings that do not start with numeric values are treated as 0 (“perl12” is converted to 0).

The last three conversions listed will produce a warning message if the -w option is used.

String Comparison
As well as comparing the value of numbers, we can compare the value of strings. This does not
mean we convert a string to a number, although if you say something like "12" > "30", Perl
will convert to numbers for you. This means we can compare the strings alphabetically:
“Bravo” comes after “Alpha” but before “Charlie”, for instance.

In fact, it’s more than alphabetical order; the computer is using either ASCII or Unicode
internally to represent the string, and so has converted it to a series of numbers in the relevant
sequence. This means, for example, “Fowl” comes before “fish”, because a capital “F” has a smaller
ASCII value (70) than a lowercase “f” (102).

We can find a character’s value by using the ord() function, which tells us where in the
(ASCII) order it comes. Let’s see which comes first, a # or a *?.

APPENDIX ■ PERL BASICS304

#!/usr/bin/perl -w
ascii.pl

print "A # has ASCII value ", ord("#"), "\ n";
print "A * has ASCII value ", ord("*"), "\ n";

This should say

$ perl ascii.pl
A # has ASCII value 35
A * has ASCII value 42
$

If we’re only concerned with a character at a time, we can compare the return values of
ord() using the < and > operators. However, when comparing entire strings, it may get a bit
tedious. If the first character of each string is the same, we would move on to the next character
in each string, and then the next, and so on.

Instead, there are string comparison operators that do this for us. Whereas the comparison
operators for numbers are mathematical symbols, the operators for strings are abbreviations.
To test whether one string is less than another, use lt. “Greater than” becomes gt, “equal to”
becomes eq, and “not equal to” becomes ne. There’s also ge and le for “greater than or equal
to” and “less than and equal to.” The three-way-comparison becomes cmp.

Here are a few examples of these:

#!/usr/bin/perl -w
strcomp1.pl

print "Which came first, the chicken or the egg? ";
print "chicken" cmp "egg", "\ n";
print "Are dogs greater than cats? ";
print "dog" gt "cat", "\ n";
print "Is ^ less than + ? ";
print "^" lt "+", "\ n";

And here are the results:

$ perl strcomp1.pl
Which came first, the chicken or the egg? -1
Are dogs greater than cats? 1
Is ^ less than + ?
$

The last line prints nothing as a result of "^" lt "+" since this operation returns the
empty string indicating false.

Be careful when comparing strings with numeric comparison operators (or numeric values
with string comparison operators):

#!/usr/bin/perl -w
strcomp2.pl

print "Test one: ", "four" eq "six", "\ n";
print "Test two: ", "four" == "six", "\ n";

APPENDIX ■ PERL BASICS 305

This code produces

$ perl strcomp2.pl
Argument "six" isn't numeric in numeric eq (==) at strcmp2.pl line 5.
Argument "four" isn't numeric in numeric eq (==) at strcmp2.pl line 5.
Test one:
Test two: 1
$

Is the second line really claiming that "four" is equal to "six"? Yes, when treated as num-
bers. If you compare them as numbers, they get converted to numbers. "four" converts to 0,
"six" converts to 0, and the 0s are equal, so our test returns true and we get a couple of warn-
ings telling us that they were not numbers to begin with. The moral of this story is, compare
strings with string comparison operators and compare numbers with numeric comparison
operators. Otherwise, your results may not be what you anticipate.

Variables
Now it is time to talk about variables. As explained earlier, a variable is storage for your scalars.
Once you’ve calculated 42*7, it’s gone. If you want to know what it was, you must do the calcu-
lation again. Instead of being able to use the result as a halfway point in more complicated
calculations, you have to spell it all out in full. That’s no fun. What we need to be able to do,
and what variables allow us to do, is store a scalar away and refer to it again later.

A scalar variable name starts with a dollar sign—for example, $name. Scalar variables can
hold either numbers or strings, and are only limited by the size of your computer’s memory. To
put data into our scalar, we assign the data to it with the assignment operator =. (Incidentally,
this is why numeric comparison is ==, because = was taken to mean the assignment operator.)

What we’re going to do here is tell Perl that our scalar contains the string "fred". Now we
can get at that data by simply using the variable’s name:

#!/usr/bin/perl -w
vars1.pl

$name = "fred";
print "My name is ", $name, "\ n";

Lo and behold, our computer announces to us that

$ perl vars1.pl
My name is fred
$

Now we have somewhere to store our data, and some way to get it back again. The next
logical step is to be able to change it.

Modifying a Variable
Modifying the contents of a variable is easy; just assign something different to it. We can use
the following:

APPENDIX ■ PERL BASICS306

#!/usr/bin/perl -w
vars2.pl

$name = "fred";
print "My name is ", $name, "\ n";
print "It's still ", $name, "\ n";
$name = "bill";
print "Well, actually, now it's ", $name, "\ n";
$name = "fred";
print "No, really, now it's ", $name, "\ n";

and watch our computer have an identity crisis:

$ perl vars2.pl
My name is fred
It's still fred
Well, actually, now it's bill
No, really, now it's fred
$

We can also do a calculation in several stages:

#!/usr/bin/perl -w
vars3.pl

$a = 6 * 9;
print "Six nines are ", $a, "\ n";
$b = $a + 3;
print "Plus three is ", $b, "\ n";
$c = $b / 3;
print "All over three is ", $c, "\ n";
$d = $c + 1;
print "Add one is ", $d, "\ n";
print "\ nThose stages again: ", $a, " ", $b, " ", $c, " ", $d, "\ n";

This code prints

$ perl vars3.pl
Six nines are 54
Plus three is 57
All over three is 19
Add one is 20
Those stages again: 54 57 19 20
$

While this works perfectly fine, it’s often easier to stick with one variable and modify its
value, if you don’t need to know the stages you went through at the end:

#!/usr/bin/perl -w
vars4.pl

APPENDIX ■ PERL BASICS 307

$a = 6 * 9;
print "Six nines are ", $a, "\ n";
$a = $a + 3;
print "Plus three is ", $a, "\ n";
$a = $a / 3;
print "All over three is ", $a, "\ n";
$a = $a + 1;
print "Add one is ", $a, "\ n";

The assignment operator = has very low precedence. This means that Perl will do the cal-
culations on the right-hand side of it, including fetching the current value, before assigning
the new value. To illustrate this, take a look at the sixth line of our example. Perl takes the cur-
rent value of $a, adds 3 to it, and then stores it back in $a.

Operating and Assigning at Once
Operations, like fetching a value, modifying it, or storing it, are very common, so there’s a special
syntax for them. Generally

$a = $a <some operator> $b;

can be written as

$a <some operator>= $b;

For instance, we could rewrite the preceding example as follows:

#!/usr/bin/perl -w
vars5.pl

$a = 6 * 9;
print "Six nines are ", $a, "\ n";
$a += 3;
print "Plus three is ", $a, "\ n";
$a /= 3;
print "All over three is ", $a, "\ n";
$a += 1;
print "Add one is ", $a, "\ n";

This works for **=, *=, +=, -=, /=, .=, %=, &=, |=, ^=, <<=, >>=, &&=, and ||=. These all have the
same precedence as the assignment operator =.

Autoincrement and Autodecrement
There are also two more operators, ++ and --. They add and subtract one from the variable,
but their precedence is a little strange. When they precede a variable, they act before every-
thing else. If they come afterward, they act after everything else. Let’s examine these in the
following example:

#!/usr/bin/perl -w
auto1.pl

APPENDIX ■ PERL BASICS308

$a = 4;
$b = 10;
print "Our variables are ", $a, " and ", $b, "\ n";
$b = $a++;
print "After incrementing, we have ", $a, " and ", $b, "\ n";
$b = ++$a * 2;
print "Now, we have ", $a, " and ", $b, "\ n";
$a = --$b + 4;
print "Finally, we have ", $a, " and ", $b, "\ n";

We should see the following output:

$ perl auto1.pl
Our variables are 4 and 10
After incrementing, we have 5 and 4
Now, we have 6 and 12
Finally, we have 15 and 11
$

Let’s work this through a piece at a time. First we set up our variables, giving the values 4
and 10 to $a and $b, respectively:

$a = 4;
$b = 10;
print "Our variables are ", $a, " and ", $b, "\ n";

In the following line, the assignment happens before the increment—this is known as
a post-increment. So $b is set to $a’s current value, 4, and then $a is autoincremented, becom-
ing 5.

$b = $a++;
print "After incrementing, we have ", $a, " and ", $b, "\ n";

In the next line, however, the incrementing takes place first—this is known as a pre-increment.
$a is now 6, and $b is set to twice that, 12.

$b= ++$a * 2;
print "Now, we have ", $a, " and ", $b, "\ n";

Finally, $b is decremented first (a pre-decrement), and becomes 11. $a is set to $b plus 4,
which is 15.

$a= --$b + 4;
print "Finally, we have ", $a, " and ", $b, "\ n";

The autoincrement operator actually does something interesting if the variable contains
a string of only alphabetic characters, followed optionally by numeric characters. Instead of
converting to a number, Perl “advances” the variable along the ranges a–z, A–Z, and 0–9. This
is more easily understood from a few examples.

#!/usr/bin/perl -w
auto2.pl

APPENDIX ■ PERL BASICS 309

$a = "A9"; print ++$a, "\ n";
$a = "bz"; print ++$a, "\ n";
$a = "Zz"; print ++$a, "\ n";
$a = "z9"; print ++$a, "\ n";
$a = "9z"; print ++$a, "\ n";

should produce

$ perl auto2.pl
B0
ca
AAa
aa0
10
$

This shows that a 9 turns into a 0 and increments the next digit left. A z turns into an a and
increments the next digit left, and if there are no more digits to the left, either an a or an A is
created depending on the case of the current leftmost digit.

Multiple Assignments
We’ve said that = is an operator, but does that mean it returns a value? Well, actually it does, it
returns whatever was assigned. This allows us to set several variables up at once. Here’s a sim-
ple example of this (read it from right to left):

$d = $c = $b = $a = 1;

First we set $a to 1, and the result of this is 1. $b is set with that, the result of which is 1.
And so it goes on.

Scoping
All the variables we’ve seen so far in our programs have been global variables. That is, they can
be seen and changed from anywhere in the program. For the moment, that’s not too much of
a problem, since our programs are very small, and we can easily understand where things get
assigned and used. However, when we start writing larger programs, this becomes a problem.

Why is this? Well, suppose one part of your program uses a variable, $counter. If another
part of your program wants a counter, it can’t call it $counter as well for fear of clobbering the
old value. This becomes more of an issue when we get into subroutines, which are little sections
of code we can temporarily call upon to accomplish something for us before returning to what
we were previously doing. Currently, we’d have to make sure all the variables in our program had
different names, and with a large program that’s not desirable. It would be easier to restrict the
life of a variable to a certain area of the program.

To achieve this, Perl provides another type of variable: lexical variables. These are con-
strained to the enclosing block and all blocks inside it. If they’re not currently inside a block,
they are constrained to the current file. To tell Perl that a variable is lexical, we say my_$variable;.
This creates a brand-new lexical variable for the current block, and sets it to the undefined
value. Here’s an example:

APPENDIX ■ PERL BASICS310

#!/usr/bin/perl -w
scope1.pl

$record = 4;
print "We're at record ", $record, "\ n";

{
my $record;
$record = 7;
print "Inside the block, we're at record ", $record, "\ n";

}

print "Outside, we're still at record ", $record, "\ n";

This should tell you

$ perl scope1.pl
We're at record 4
Inside the block, we're at record 7
Outside we're still at record 4
$

Let’s look at how this program works. First, we set our global variable $record to 4.

$record = 4;
print "We're at record ", $record, "\ n";

Now we enter a new block and create a new lexical variable. Important! This is completely
and utterly unrelated to the global variable $record as my() creates a new lexical variable. This
exists for the duration of the block only, and has the undefined value.

{
my $record;

Next, the lexical variable is set to 7, and printed out. The global $record is unchanged.

$record = 7;
print "Inside the block, we're at record ", $record, "\ n";

Finally, the block ends, and the lexical copy ends with it. We say that it has gone out of
scope. The global remains, however, and so $record has the value 4.

}

print "Outside, we're still at record ", $record, "\ n";

In order to make us think clearly about our programming, we will ask Perl to be strict
about our variable use. The statement use strict; checks that, among other things, we’ve
declared all our variables. We declare lexicals with the my() function. Here’s what happens if
we change our program to use strict format:

APPENDIX ■ PERL BASICS 311

#!/usr/bin/perl -w
scope2.pl

use strict;

$record = 4;
print "We're at record ", $record, "\ n";

{
my $record;
$record = 7;
print "Inside the block, we're at record ", $record, "\ n";

}

print "Outside, we're still at record ", $record, "\ n";

Now, the global $record is not declared. So sure enough, Perl complains about it, generat-
ing this output:

$ perl scope2.pl
Global symbol "$record" requires explicit package name at scope2.pl line 6.
Global symbol "$record" requires explicit package name at scope2.pl line 7.
Global symbol "$record" requires explicit package name at scope2.pl line 15.
Execution of scope2.pl aborted due to compilation errors.
$

We’ll see exactly what this means in later chapters (in Beginning Perl, Second Edition), but
for now it suffices to declare $record as a my() variable:

#!/usr/bin/perl -w
scope3.pl

use strict;

my $record;
$record = 4;
print "We're at record ", $record, "\ n";

{
my $record;
$record = 7;
print "Inside the block, we're at record ", $record, "\ n";

}

print "Outside, we're still at record ", $record, "\ n";

Now Perl is happy, and we get the same output as before. You should almost always start
your programs with a use strict. Of course, nobody’s going to force you to do so, but it will
help you avoid a lot of mistakes, and it will certainly give other people who have to look at
your code more confidence in it.

APPENDIX ■ PERL BASICS312

Variable Names
We’ve not really examined yet what the rules are regarding what we can call our variables. We
know that scalar variables have to start with a dollar sign, but what next? The next character
must be a letter (uppercase or lowercase) or an underscore, and after that, any combination of
numbers, letters, and underscores is permissible.

Note that Perl’s variable names, like the rest of Perl, are case-sensitive, so $user is different
from $User, and both are different from $USER.

The following are legal variable names: $I_am_a_long_variable_name, $simple, $box56,
$__hidden, and $B1.

The following are not legal variable names: $10c (doesn’t start with letter or underscore),
$mail-alias (- is not allowed), $your name (spaces are not allowed).

The Special Variable $_
There are certain variables, called special variables, that Perl provides internally that you
either are not allowed to or do not want to overwrite. One that is allowed by the preceding
rules is $_, a very special variable indeed. $_ is the default variable that a lot of functions read
from, write to, and operate upon if no other variable is given. We’ll see plenty of examples of it
throughout the book. For a complete list of all the special variables that Perl uses and what
they do, type perldoc perlvar at the command line.

Variable Interpolation
We said earlier that double-quoted strings interpolate variables. What does this mean? Well, if
you mention a variable, say $name, in the middle of a double-quoted string, you get the value
of the variable, rather than the actual characters. As an example, see what Perl does to this:

#!/usr/bin/perl -w
varint1.pl
use strict;

my $name = "fred";
print "My name is $name\ n";

This produces

$ perl varint1.pl
My name is fred
$

Perl interpolates the value of $name into the string. Note that this doesn’t happen with
single-quoted strings, just like escape sequence interpolation:

#!/usr/bin/perl -w
varint2.pl

use strict;

APPENDIX ■ PERL BASICS 313

my $name = "fred";
print 'My name is $name\ n';

Here we get

$ perl varint2.pl
My name is $name\ n$

Notice that the system prompt is printed at the end of that line because \ n is not a newline
character within the single quotes. This doesn’t just happen in things we print, it happens every
time we construct a string:

#!/usr/bin/perl -w
varint3.pl

use strict;

my $name = "fred";
my $salutation = "Dear $name,";
print $salutation, "\ n";

This gives us

$ perl varint3.pl
Dear fred,
$

This has exactly the same effect as

my $salutation = "Dear " . $name . ",";

but is more concise and easier to understand.
If you need to place text immediately after the variable, you can use curly braces to

delimit the name of the variable. Take this example:

#!/usr/bin/perl -w
varint4.pl

use strict;

my $times = 8;
print "This is the $timesth time.\ n";

This is syntactically incorrect, because Perl looks for a variable $timesth, which hasn’t
been declared. In this case, we have to change the last line by wrapping the variable name in
curly braces to this:

print "This is the ${ times} th time.\ n";

APPENDIX ■ PERL BASICS314

Now we get the right result:

$ perl varint4.pl
This is the 8th time.
$

The if Statement
In programming, we often need to test a condition, and if that condition is true, take some
action. This can be performed using an if statement, which has the general syntax

if (condition) {
statements

}

Don’t type this in and try to make it run—it is meant to be a general structure of the construct.
An important note: those curly braces around the body (the statements) are required. You

must use them, even if the body is one line of code.
For instance, let’s say we want to divide by a number unless that number is 0. We can first

check to see if the number is not 0, and if it is not, perform the division.

if ($number != 0) {
$result = 100 / $number;

}

Let’s create a program to use the if statement. It will prompt the user to enter a number.
If the number is not 0, then 100 is divided by that number and the result is stored in $result. If
the number is 0, the result will remain the default value of 0:

#!/usr/bin/perl -w
if.pl

use strict;

print "please enter a number: ";
chomp(my $number = <STDIN>);
my $result = 0;
if ($number != 0) {

$result = 100 / $number;
}

print "the result is: $result\ n";

Recall that the statement

chomp(my $number = <STDIN>);

APPENDIX ■ PERL BASICS 315

is shorthand for the two statements that read from standard input and then remove the newline:

my $number = <STDIN>;
chomp $number;

Now let’s execute the program, once with a nonzero value and once with zero:

$ perl if.pl
please enter a number: 8
the result is: 12.5
$ perl if.pl
please enter a number: 0
the result is: 0
$

Operators Revisited
The if statement and all the other control structures we’re going to visit in this section test
to see if a condition is true or false. They do this using the Boolean logic mentioned earlier,
together with Perl’s ideas of true and false. To remind you of these:

• An empty string, "", is false.

• The number 0 and the string "0" are both false.

• An empty list, (), is false.

• The undefined value is false.

• Everything else is true.

However, you need to be careful for a few traps here. A string containing invisible charac-
ters, like spaces or newlines, is true. A string that isn’t "0" is true, even if its numerical value is
0, so "0.0" for instance, is true.

Larry Wall has said that programming Perl is an empirical science—you learn things
about it by trying them out. Is (()) a true value? You can look it up in books and the online
documentation, or you can spend a few seconds writing a program like this:

#!/usr/bin/perl –w
emptylist.pl

use strict;

if ((())) {
print "Yes, it is.\ n";

}

This way you get the answer straight away, with the minimum of fuss. (If you’re interested,
it isn’t a true value.) We’ve also seen that conditional operators can test things out, returning 1
if the test was successful and an empty string if it was not. Let’s see more of the things we can test.

APPENDIX ■ PERL BASICS316

Comparing Numbers
We can test whether one number is bigger, smaller, or the same as another. Assuming we have
two numbers stored in the variables $x and $y, Table A-2 shows the operators we can use for this.

Table A-2. Numeric Comparison Operators

Operator Description

$x > $y $x is greater than $y.

$x < $y $x is less than $y.

$x >= $y $x is greater than or equal to $y.

$x <= $y $x is less than or equal to $y.

$x == $y $x has the same numeric value as $y.

$x != $y $x does not have the same numeric value as $y.

Don’t forget that the numeric comparison needs a doubled equals sign (==) so that Perl
doesn’t think you’re trying to set $x to the value of $y.

Also remember that Perl converts $x and $y to numbers in the usual way. It reads numbers
or decimal points from the left for as long as possible, ignoring initial spaces, and then drops
the rest of the string. If no numbers were found, the value is set to 0.

Let’s see an example—a very simple guessing game. The computer has a number, and the
user has to guess what it is. If the user doesn’t guess correctly, the computer gives a hint. As we
learn more about Perl, we’ll add the opportunity to give more than one try, and to pick a differ-
ent number each game.

#!/usr/bin/perl -w
guessnum1.pl

use strict;

my $target = 12;
print "Guess my number!\ n";
print "Enter your guess: ";
my $guess = <STDIN>;

if ($target == $guess) {
print "That's it! You guessed correctly!\ n";
exit;

}
if ($guess > $target) {

print "Your number is more than my number\ n";
exit;

}
if ($guess < $target){

print "Your number is less than my number\ n";
exit;

}

APPENDIX ■ PERL BASICS 317

Let’s give it a few tries:

$ perl guessnum1.pl
Guess my number!
Enter your guess: 3
Your number is less than my number
$ perl guessnum1.pl
Guess my number!
Enter your guess: 15
Your number is more than my number
$ perl guessnum1.pl
Guess my number!
Enter your guess: 12
That's it! You guessed correctly!
$

The first thing we do in this program is set up our secret number. OK, at the moment it’s
not very secret, since it’s right there in the source code, but we can improve on this later. After
this, we get a number from the user:

my $guess = <STDIN>;

Then we do three sorts of comparisons with the numeric operators we’ve just seen. We
use the basic pattern of the if statement again: if (condition) { action }.

if ($target == $guess) {
print "That's it! You guessed correctly!\ n";
exit;

}

Since only one of the tests can be true—the user’s number can’t be both smaller than our
number and the same as it—we may as well stop work after a test was successful. The exit()
function tells Perl to stop the program completely.

Comparing Strings
When we’re comparing strings, we use a different set of operators to do the comparisons as
listed in Table A-3.

Table A-3. String Comparison Operators

Operator Description

$x gt $y $x is string greater than $y.

$x lt $y $x is string less than $y.

$x ge $y $x is string greater than or equal to $y.

$x le $y $x is string less than or equal to $y.

$x eq $y $x is the same as $y.

$x ne $y $x is not the same as $y.

APPENDIX ■ PERL BASICS318

Here’s a very simple way of testing if a user knows a password. (Note: don’t use a good
password in this program since the user can just read the source code to find it!)

#!/usr/bin/perl -w
password.pl

use strict;

my $password = "foxtrot";
print "Enter the password: ";
my $guess = <STDIN>;
chomp $guess;
if ($password eq $guess) {

print "Pass, friend.\ n";
}
if ($password ne $guess) {

die "Go away, imposter!\ n";
}

Here’s our security system in action:

$ perl password.pl
Enter the password: abracadabra
Go away, imposter!
$ perl password.pl
Enter the password: foxtrot
Pass, friend.
$

This program starts by asking the user for input:

my $guess = <STDIN>;

Just a warning: this is a horrendously bad way of asking for a password, since it’s echoed
to the screen, and everyone looking at the user’s computer would be able to read it. Even
though you won’t be using a program like this, if you ever do need to get a password from the
user, the Perl FAQ provides a better method in perlfaq8. Type perldoc -q password to find it.

chomp $guess;

This statement chomps the newline off of $guess. We must never forget to remove the
newline from the end of the user’s data. We didn’t need to do this for numeric comparison,
because Perl would remove that for us anyway during conversion to a number. Otherwise,
even if the user had entered the right password, Perl would have tried to compare "foxtrot"
with "foxtrot\ n" and it could never be the same.

if ($password ne $guess) {
die "Go away, imposter!\ n";

}

Then if the password we have isn’t the same as the user’s input, we send out a rude mes-
sage and terminate the program.

APPENDIX ■ PERL BASICS 319

Other Tests
What other tests can we perform? We can test if a variable is defined (it must contain some-
thing other than the undefined value) using defined().

#!/usr/bin/perl -w
defined.pl

use strict;

my ($a, $b);
$b = 10;

if (defined $a) {
print "\ $a has a value.\ n";

}
if (defined $b) {

print "\ $b has a value.\ n";
}

Not surprisingly, the result we get is this:

$ perl defined.pl
$b has a value.
$

You can use this to avoid the warnings you get when you try and use a variable that
doesn’t have a value. If we’d tried to say if ($a == $b), Perl would have said

Use of uninitialized value in numeric eq (==)

So we have our basic comparisons. Don’t forget that some functions will return a true
value if they were successful and false if they were not. You will often want to check whether
the return value of an operation (particularly one that relates to the operating system) is true
or not.

Logical Operators
We also saw earlier that we can join together several tests into one by the use of the logical
operators. Table A-4 provides a summary of those.

Table A-4. Logical Operators

Operator Description

$x and $y True if both $x and $y are true$x && $y

$x or $y True if either of $x or $y, or both are true$x || $y

not $x True if $x is not true! $x

APPENDIX ■ PERL BASICS320

The operators AND, OR, and NOT are usually used instead of &&, ||, and ! mainly due to
their readability. The operator NOT means not, after all. Don’t forget there is a difference in
precedence between the two—AND, OR, and NOT all have lower precedence than their sym-
bolic representations.

Multiple Choice: if . . . else
Consider these two if statements:

if ($password eq $guess) {
print "Pass, friend.\ n";

}
if ($password ne $guess) {

die "Go away, imposter!\ n";
}

We know that if the first test condition is true, then the second one will not be—we’re ask-
ing exactly opposite questions: Are these the same? Are they not the same? In which case, it
seems wasteful to do two tests. It’d be much nicer to be able to say, “If the strings are the same,
do this. Otherwise, do that.” And in fact we can do exactly that, although the keyword is not
“otherwise” but else:

if ($password eq $guess) {
print "Pass, friend.\ n";

} else {
die "Go away, imposter!\ n";

}

That’s

if (condition) { action } else { alternative action }

Like the if statement, those curly braces are required in the else part.

Even More Choices: if . . . elsif . . . else
Some things in life aren’t clear-cut. In some cases, we’ll want to test more than one condition.
When looking at several related possibilities, we’ll want to ask questions such as, “Is this true?
If this isn’t, then is that true? If that’s not true, how about the other?” Note that this is distinct
from asking three independent questions; whether we ask the second depends on whether or
not the first was true. In Perl, we could very easily write something like this:

if (condition1) {
action1

} else {
if (condition2) {

action2
} else {

if (condition3) {
action3

} else {

APPENDIX ■ PERL BASICS 321

action4
}

}
}

You might agree that this looks pretty messy. To make it nicer, we can combine the else
and the next if into a single word, elsif. Here’s what the preceding would look like when
rephrased in this way:

if (condition1) {
action1

} elsif (condition2) {
action2

} elsif (condition3) {
action3

} else {
action4

}

Much neater! We don’t have an awful cascade of closing curly braces at the end, and it’s
easier to see what we’re testing, and when we’re testing it.

Let’s look at an example. Most of us will not go outside if it’s raining, but we’ll always go
out for a walk in the snow. We will not go outside if it’s less than 18 degrees Celsius. Otherwise,
we’ll probably go out unless we’ve got too much work to do. Do we want to go for a walk?

#!/usr/bin/perl -w
walking.pl

use strict;

print "What's the weather like outside? ";
chomp(my $weather = <STDIN>);
print "How hot is it, in degrees? ";
chomp(my $temperature = <STDIN>);
print "And how many emails left to reply to? ";
chomp(my $work = <STDIN>);

if ($weather eq "snowing") {
print "It's snowing, let's go!\ n";

} elsif ($weather eq "raining") {
print "No way, sorry, it's raining so I'm staying in.\ n";

} elsif ($temperature < 18) {
print "Too cold for me!\ n";

} elsif ($work > 30) {
print "Sorry - just too busy.\ n";

} else {
print "Well, why not?\ n";

}

APPENDIX ■ PERL BASICS322

Let’s say it’s 201 degrees, we have 27 e-mails to reply to, and it’s cloudy out there:

$ perl walking.pl
What's the weather like outside? cloudy
How hot is it, in degrees? 20
And how many e-mails left to reply to? 27
Well, why not?
$

Looks like we can fit a walk in after all.
The point of this rather silly little program is that once it has gathered the information it

needs, it runs through a series of tests, each of which could cause it to finish. First, we check to
see if it’s snowing:

if ($weather eq "snowing") {
print "It's snowing, let's go!\ n";

If so, then we print our message and—this is the important part—do no more tests. If not,
then we move on to the next test:

} elsif ($weather eq "raining") {
print "No way, sorry, it's raining so I'm staying in.\ n";

Again, if this is true, we stop testing; otherwise, we move on. Finally, if none of the tests
are true, we get to the else:

} else {
print "Well, why not?\ n";

}

Please remember that this is very different to what would happen if we used four separate
if statements. The tests overlap, so it is possible for more than one condition to be true at once.
For example, if it was snowing and we had over 30 e-mails to reply to, we’d get two conflicting
answers. elsif tests should be read as “Well, how about if . . . ?”

Another example of using an if/elsif/else is the program we saw earlier, guessnum1.pl.
The decision we made in that program was implemented with three if statements:

if ($target == $guess) {
print "That's it! You guessed correctly!\ n";
exit;

}
if ($guess > $target) {

print "Your number is more than my number\ n";
exit;

}
if ($guess < $target){

print "Your number is less than my number\ n";
exit;

}

APPENDIX ■ PERL BASICS 323

Notice that in each if statement we execute the exit() function since, if the condition is
true, there is no reason to check any of the following conditions. Instead of using the exit()
function in each of the if blocks, this would be better written with an if/elsif/else as shown
in guessnum2.pl:

#!/usr/bin/perl -w
guessnum2.pl

use strict;

my $target = 12;
print "Guess my number!\ n";
print "Enter your guess: ";
my $guess = <STDIN>;

if ($target == $guess) {
print "That's it! You guessed correctly!\ n";

} elsif ($guess > $target) {
print "Your number is more than my number\ n";

} elsif ($guess < $target) {
print "Your number is less than my number\ n";

}

The unless Statement
There’s another way of saying if (not $a). As always in Perl, there’s more than one way to do it.
Some people prefer to think, “If this is not true, then { ... },” but other people think “Unless this
is true, then { ... }.” Perl caters to both sets of thought patterns, and we could just as easily have
written this:

unless ($a) {
print "\ $a is not true\ n";

}

The psychology is different, but the effect is the same. We’ll see later how Perl provides a few
alternatives for these control structures to help them more effectively fit the way you think.

Expression Modifiers
When we’re talking in English, it’s quite normal for us to say

• If this is not true, then this happens, or

• Unless this is true, this happens.

Similarly, it’s also quite natural to reverse the two phrases, saying

• This happens if this is not true, or

• This happens unless this is true.

APPENDIX ■ PERL BASICS324

In Perl-speak, we can take this if statement:

if ($number == 0) {
die "can't divide by 0";

}

and rewrite it using expression modifiers as follows:

die "can't divide by 0" if $number == 0;

Notice how the syntax here is slightly different; it’s action if condition. There is no need for
parentheses around the condition, and there are no curly braces around the action. Indeed,
the indentation isn’t part of the syntax, so we could even put the whole statement on one line.
Only a single statement will be covered by the condition. This form of the if statement is called
an expression modifier.

We can turn unless into an expression modifier too, so, instead of this:

if (not $name) {
die "\ $name has a false value";

}

you may find it more natural to write this:

die "\ $name has a false value" unless $name;

Using Short-Circuited Evaluation
There is yet another way to do something if a condition is true. By using the fact that Perl
stops processing a logical operator when it knows the answer, we can create a sort of unless
conditional:

$name or die "\ $name has a false value";

How does this work? Well, it’s reliant on the fact that Perl uses short-circuited, or lazy,
evaluation to give a logical operator its value. If we have the statement X or Y, then if X is true,
it doesn’t matter what Y is, so Perl doesn’t look at it. If X isn’t true, Perl has to look at Y to see
whether or not that’s true. So if $name has a true value, then the die() function will not be exe-
cuted. Instead, it will do nothing and continue on executing the next statement.

This form of conditional is most often used when checking that something we did succeeded
or returned a true value. We will see it often when we’re handling files.

To create a positive if conditional this way, use AND instead of OR. For example, to add
one to a counter if a test is successful, you may write

$success and $counter++;

If you’ll recall, and statements are reliant on both substatements being true. So, if $success
is not true, Perl won’t bother evaluating $counter++ and upping its value by 1. If $success was
true, then it would.

APPENDIX ■ PERL BASICS 325

Looping Constructs
Now we know how to do everything once. What about if we need to repeat an operation or
series of operations? Of course, there are constructs available to do this in Perl, too.

In programming, there are various types of loops. Some loop forever and are called infinite
loops, while most, in contrast, are finite loops. We say that a program “gets into” or “enters”
a loop, and then “exits” or “falls out” when finished. Infinite loops may not sound very useful,
but they certainly can be—particularly because most languages, Perl included, provide you
with a way by which you can exit the loop. They will also be useful for situations when you just
want the program to continue running until the user stops it manually, the computer powers
down, or the heat death of the universe occurs, whichever is sooner.

There’s also a difference between definite loops and indefinite loops. In a definite loop,
you know how many times the block will be repeated in advance. An indefinite loop will check
a condition in each iteration to determine whether or not it should do another.

There’s also a difference between an indefinite loop that checks before the iteration and
one that checks afterward. The latter will always go through at least one iteration, in order to
get to the check, whereas the former checks first and so may not go through any iterations at all.

Perl supports ways of expressing all of these types of loops. First, let’s examine the while
loop.

The while Loop
Let’s start with the indefinite loops. These check a condition, then do an action, and then go
back and check the condition again. The first one is the while loop. As you might be able to
work out from the name, this loop keeps doing something while a condition is true. The syntax
of while is much like the syntax of if:

while (condition) { action }

Once again, those curly braces are required. Here’s a very simple while loop:

#!/usr/bin/perl -w
while1.pl

use strict;

my $countdown = 5;

while ($countdown > 0) {
print "Counting down: $countdown\ n";
$countdown--;

}

And here’s what it produces:

$ perl while1.pl
Counting down: 5
Counting down: 4
Counting down: 3

APPENDIX ■ PERL BASICS326

Counting down: 2
Counting down: 1
$

Let’s see a flow chart for this program. While there’s still a value greater than 0 in the
$counter variable, we do these two statements:

print "Counting down: $countdown\ n";
$countdown--;

Perl goes through the loop a first time when $countdown is 5—the condition is met, so
a message gets printed, and $countdown gets decreased to 4. Then, as the flowchart implies,
back we go to the top of the loop. We test again: $countdown is still more than 0, so off we go
again. Eventually, $countdown is 1, we print our message, $countdown is decreased, and it’s now
0. This time around, the test fails, and we exit the loop.

while (<STDIN>)
Recall that we talked about using <STDIN> to read from standard input (normally the keyboard).
This statement reads the next line of standard input, up to and including the newline character:

$line_in = <STDIN>;

We can put this assignment within a while loop that will read from standard input until
end of file (in Unix a ^D or Ctrl+D; in Windows a ^Z<Enter>). This loop reads a line at a time
into $line_in and then prints the line read in:

while ($line_in = <STDIN>) {
print $line_in;

}

This behavior, reading from standard input until end of file, is so common that if <STDIN>
is by itself within the while loop parentheses (and only within the while loop parentheses),
then the line of standard input is magically assigned to the special variable $_. This loop reads
each line into $_, and then the line is printed:

while (<STDIN>) {
print $_;

}

This is so common that print() defaults to printing $_:

while (<STDIN>) {
print;

}

Let’s look at an example of using this magic variable $_. This program will loop through
standard input one line at a time until end of file, and for each line it will print a message fol-
lowed by the line entered:

#!/usr/bin/perl -w
while2.pl

APPENDIX ■ PERL BASICS 327

use strict;

while (<STDIN>) {
print "You entered: ";
print;

}

Following is an example of running this program in Unix:

$ perl while2.pl
hello
You entered: hello
world
You entered: world
good
You entered: good
bye
You entered: bye
^D
$

The $_ variable is a useful variable—it is the default argument for many different func-
tions. An example is the chomp() function. The statement

chomp $_;

could have been written as

chomp;

Many Perl programmers find it convenient and readable to write a loop like this one:

while ($line = <STDIN>) {
chomp $line;
...

}

using the default nature of $_:

while (<STDIN>) {
chomp;
...

}

Whether or not you write code to take advantage of the magic nature of $_ is a choice for
you to make, but we suggest you practice with it enough to be able to read code that others
have written where $_ is used.

APPENDIX ■ PERL BASICS328

Infinite Loops
The important but obvious point is that what we’re testing gets changed inside the loop. If our
condition is always going to give a true result, we have ourselves an infinite loop. Let’s just
remove the second of those two statements:

#!/usr/bin/perl -w
while3.pl

use strict;

my $countdown = 5;

while ($countdown > 0) {
print "Counting down: $countdown\ n";

}

$countdown never changes. It’s always going to be 5, and 5 is, we hope, always going to be
more than 0. So this program will keep printing its message until you interrupt it by holding
down Ctrl+C. Hopefully, you can see why you need to ensure that what you do in your loop
affects your condition.

Should we actually want an infinite loop, there’s a fairly standard way to do it. Just put
a true value—typically 1—as the condition:

while (1) {
print "Bored yet?\ n";

}

The converse, of course, is to say while (0) in the loop’s declaration, but nothing will ever
happen because this condition is tested before any of the commands in the loop are executed.
A bit silly, really.

Looping Until
The opposite of if is unless, and the opposite of while is until. It’s exactly the same as while
(not condition) { ... }. Using the condition in the program while1.pl shown previously

while ($countdown > 0) {

its logical negation would be

until ($countdown <= 0) {

Therefore, we can write while1.pl as

#!/usr/bin/perl -w
until.pl

use strict;

my $countdown = 5;

APPENDIX ■ PERL BASICS 329

until ($countdown <= 0) {
print "Counting down: $countdown\ n";
$countdown--;

}

And here’s what it produces:

$ perl until.pl
Counting down: 5
Counting down: 4
Counting down: 3
Counting down: 2
Counting down: 1
$

The for Loop
Perl has a for loop, similar to the one found in C/C++/Java. Its syntax is

for (init_expr; test_expr; step_expr) {
action

}

The init_expr is done first and once. Then the test_expr is tested to be true or false. If
true, the action is executed, and the step_expr is executed. Then the test_expr is tested to be
true or false, etc.

The most common use of a for loop is as an alternative way of writing a while loop that
might resemble this one:

$i = 1;
while ($i <= 5) {

do something important
$i++;

}

This can be written in a for loop as follows:

for ($i = 1; $i <= 5; $i++) {
do something important

}

The foreach Loop
Perl has another loop called the foreach loop. It is used to loop through lists and arrays. Arrays
are discussed in detail in Beginning Perl, but since we have seen examples of a list, we can look
at the foreach loop processing a list of numbers:

#!/usr/bin/perl -w
foreach.pl

use strict;

APPENDIX ■ PERL BASICS330

my $number;

foreach $number (1 .. 10) {
print "the number is: $number\ n";

}

The foreach loop executes the body of the loop (the print() function in this example) for
each number in the list. $number is called the loop control variable, and it takes on the values
in the list, one at a time. Recall that (1 .. 10) is shorthand for (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). This
code produces this result:

$ perl foreach.pl
the number is: 1
the number is: 2
the number is: 3
the number is: 4
the number is: 5
the number is: 6
the number is: 7
the number is: 8
the number is: 9
the number is: 10
$

A note about the keywords for and foreach: they are synonyms for each other. In other
words, we can write

foreach ($i = 1; $i <= 10; $i++)_ { .. }

and

for $number (1..10) { .. }

foreach is rarely used in place of for, but for is often used instead of foreach. In the spirit
of minimal confusion, we will spell out foreach when we have a foreach loop.

do .. while and do .. until
When we were categorizing our lists, we divided indefinite loops into those that execute at
least once and those that may execute zero times. The while loop we’ve seen so far tests the
condition first, and so if the condition isn’t true the first time around, the “body” of the loop
never gets executed. There are two other ways to write our loop to ensure that the body is
always executed at least once:

do { action } while (condition);
do { action } until (condition);

Now we do the test after the block. This is equivalent to moving the diamond in our flow-
chart from the top to the bottom. Here is an example:

#!/usr/bin/perl -w
dowhiledountil.pl

APPENDIX ■ PERL BASICS 331

use strict;

my $i = 1;

print "starting do...while:\ n";
do {

print " the value of \ $i: $i\ n";
$i++;

} while ($i < 6);

$i = 1;

print "starting do...until\ n";
do {

print " the value of \ $i: $i\ n";
$i++;

} until ($i >= 6);

Executing this program produces the following:

$ perl dowhiledountil.pl
starting do...while:

the value of $i: 1
the value of $i: 2
the value of $i: 3
the value of $i: 4
the value of $i: 5

starting do...until
the value of $i: 1
the value of $i: 2
the value of $i: 3
the value of $i: 4
the value of $i: 5

$

The importance of the do..while and do..until loop is that the body of the loop is always
executed at least once.

Expression Modifying
As before, you can use while as a statement modifier. Following the pattern for if, here’s what
you’d do with while:

while (condition) { statement }

becomes

statement while condition;

Similarly,

until (condition) { statement }

APPENDIX ■ PERL BASICS332

becomes

statement until condition;

Therefore, this loop:

while (<STDIN>) {
print "You entered: $_";

}

can be written as

print "You entered: $_" while <STDIN>;

Loop Control Constructs
Perl provides constructs to allow us to control the flow of our loops. They allow us to break out
of a loop, go to the next iteration of the loop, or re-execute the loop. We’ll start with breaking
out of a loop.

Breaking Out
last, in the body of a loop, will make Perl immediately exit, or “break out of” that loop. The
remaining statements in the loop are not executed, and you end up right at the end. Here is an
example of a program that breaks out of the loop when the user enters the text done:

#!/usr/bin/perl -w
last1.pl

use strict;

while (<STDIN>) {
if ($_ eq "done\ n") {

last;
}
print "You entered: $_";

}

print "All done!\ n";

$ perl last1.pl
Songs
You entered: Songs
from
You entered: from
the
You entered: the
Wood
You entered: Wood

APPENDIX ■ PERL BASICS 333

done
All done!
$

You can use a last in any looping construct (while, until, for, and foreach). However, the
last does not work with the do { } while or do { } until loops.

Note that last1.pl could have been written using an expression modifier. It can be argued
that this code is a bit more readable:

#!/usr/bin/perl -w
last2.pl

use strict;

while (<STDIN>) {
last if $_ eq "done\ n";
print "You entered: $_";

}

print "All done!\ n";

Going On to the Next
If you want to skip the rest of the processing of the body, but don’t want to exit the loop, you
can use next to immediately go execute the next iteration of the loop by testing the expression.
Here is an example of a program that reads input from the user, and if the line of input is not
blank, the line is printed. It the line is blank, then we immediately go back to read the next line:

#!/usr/bin/perl -w
next1.pl

use strict;

print "Please enter some text:\ n";
while (<STDIN>) {

if ($_ eq "\ n") {
next;

}
chomp;
print "You entered: [$_]\ n";

}

Here is an example of running this program in Windows:

$ perl next1.pl
Please enter some text:
testing
You entered: [testing]
one
You entered: [one]

APPENDIX ■ PERL BASICS334

two three
You entered: [two three]
^Z<enter>
$

Notice that when the user entered a blank line, then the program immediately read the
next line of input.

This program could have be written with an expression modifier:

#!/usr/bin/perl -w
next2.pl

use strict;

print "Please enter some text:\ n";
while (<STDIN>) {

next if $_ eq "\ n";
chomp;
print "You entered: [$_]\ n";

}

Reexecuting the Loop
On rare occasions, you’ll want to go back to the top of the loop, but without testing the condi-
tion (in the case of a for or while loop) or getting the next element in the list (as in a for or
while loop). If you feel you need to do this, the keyword to use is redo. This is illustrated in this
example:

#!/usr/bin/perl -w
redo.pl

use strict;

my $number = 10;

while (<STDIN>) {
chomp;
print "You entered: $_\ n";
if ($_ == $number) {

$_++;
redo;

}
print "Going to read the next number now...\ n";

}

If the user enters the value 10, then the input is incremented to 11 and we jump to the
beginning of the block, at which point the value will be chomped (which has no effect on the
value since it does not end in newline), and then the value 11 is reported. Executing this pro-
gram in Windows would look like the following:

APPENDIX ■ PERL BASICS 335

$ perl redo.pl
5
You entered: 5
Going to read the next number now...
20
You entered: 20
Going to read the next number now...
10
You entered: 10
You entered: 11
Going to read the next number now...
^Z<enter>
$

Loop Labels
By default, last, next, and redo operate on the innermost looping construct only. For instance,
in this code:

#!/usr/bin/perl -w
looplabel1.pl

use strict;

my $i = 1;

while ($i <= 5) {
my $j = 1;
while ($j <= 5) {

last if $j == 3;
print "$i ** $j = ", $i ** $j, "\ n";
$j++;

}
$i++;

}

the last statement within the innermost loop construct (while ($j <= 5)) will last out of the
innermost looping construct only. Therefore, each time $j reaches 3 within the inner loop, we
last out of the inner loop, increment $i, and go back up to test the expression for the outer
while loop. This generates the following output:

$ perl looplabel1.pl
1 ** 1 = 1
2 ** 1 = 2
2 ** 2 = 4
3 ** 1 = 3
3 ** 2 = 9
4 ** 1 = 4
4 ** 2 = 16

APPENDIX ■ PERL BASICS336

5 ** 1 = 5
5 ** 2 = 25
$

To make the last statement last out of the outer looping construct, we must label the
outer looping construct with a loop label. A loop label is a variable that the programmer cre-
ates (it is recommended that you use all uppercase names), followed by a colon, preceding the
looping construct. This is illustrated in looplabel2.pl:

#!/usr/bin/perl -w
looplabel2.pl

use strict;

my $i = 1;

OUTER: while ($i <= 5) {
my $j = 1;
while ($j <= 5) {

last OUTER if $j == 3;
print "$i ** $j = ", $i ** $j, "\ n";
$j++;

}
$i++;

}

Now, when the last statement is executed, the code jumps out of the outer loop named
OUTER:

$ perl looplabel2.pl
1 ** 1 = 1
2 ** 1 = 2
$

goto
As a matter of fact, you can put a label before any statement whatsoever. If you want to really
mess around with the structure of your programs, you can use goto LABEL to jump anywhere
in your program. Whatever you do, don’t do this. This is not to be used. Don’t go that way.

We’re telling you about it for the simple reason that if you see it in anyone else’s Perl, you
can laugh heartily at them. goto with a label is to be avoided like the plague.

Why? Because not only does it turn the clock back 30 years (the structured programming
movement started with the publication of a paper called “Use of goto considered harmful”),
but it tends to make your programs amazingly hard to follow. The flow of control can shoot off
in any direction at any time, into any part of the file—maybe into a different file. You can even
find yourself jumping into the middle of loops, which really doesn’t bear thinking about. Don’t
use it unless you really, really, really understand why you shouldn’t. And even then, don’t use
it. Larry Wall has never used goto with a label in Perl, and he created Perl.

Don’t. (He’s watching.—Ed.)

APPENDIX ■ PERL BASICS 337

Summary
This appendix contains lightly edited excerpts from Beginning Perl, Second Edition by James
Lee (Apress, 2004; ISBN: 1-59059-391-X), the goal being to give you a refresher on some of the
basics of Perl. There are still many aspects of Perl you should cover, including many more
detailed within Beginning Perl that were used in this book. For example, Chapter 4 contains
coverage of lists and arrays, Chapter 5 works with hashes, and Chapter 6 describes subrou-
tines and functions. Not to mention the nine other chapters of introductory material on
Perl. Beginning Perl is a great companion to this book; if you still need assistance with Perl,
I recommend picking up a copy of Beginning Perl.

APPENDIX ■ PERL BASICS338

■Symbols
" " (double quotes), 290, 299
(hash sign), 242–243
#! (shebang line), 202
$ character

escaping with INTERPOLATE enabled, 242
scalar variables and, 306

$dbh, 53
$DBI::errstr method, 55
$m, 276
$r, 276
% (wildcard host entry), 59
%>, 273
%] tag, 240
%ENV hash, 23
& (AND) operator, 296, 321
&& operator, 301
&> tag, 273
* (multiplication operator), 292, 294
** (exponentiation operator), 295
++ (autoincrement operator), 308
' ' (single quotes), 288
-- (autodecrement operator), 308
/ (divide operator), 294
:all group, 6
; (semicolon), 8
< (less-than sign), 74, 299
<%, 273
<%perl%> block, 269, 273
<& tag, 273
<=> operator, 300–301
<= (less-than-or-equal-to sign), 300
= (assignment operator), 308, 310
== (comparison operator), 299
> (greater-than sign), 74, 299
>= (greater-than-or-equal-to sign), 300
>> (double greater-than sign), 74
! operator, 301
[% tag, 240, 298
\t escape sequence, 288
^ (XOR) operator, 297
_request() method, 210, 211
_ (underscore), 245
| (pipe) character, 85, 86

as OR operator, 297, 321
|| operator, 301
~ (NOT) operator, 298

■A
accessing request headers, 217–220
AND (&) operator, 296–297, 321
Apache::Constants class, 221–222
Apache::Cookie class

methods and parameters, 222
reading cookies, 224–225
sending cookies with, 223

Apache::DBI module, 207–208
Apache::Log module, 227–229
Apache::PerlRun program

about, 189
Apache::Registry vs., 189–193, 202–205
clearing namespaces with, 189, 203
enabling, 205
invoking PerlRunOnce option, 206
using with PerlHandler, 202

Apache::Registry program
about, 189
Apache::PerlRun vs., 189–193, 202–205
configuring to mod_perl, 206–207
renaming of, 201
using with PerlHandler, 202

Apache::Request module
looking at parameters with param()

method, 217
need for when compiling Mason, 265
working with uploaded files, 78, 225–226

Apache::Server module, 226–227
Apache::SOAP package, 148
Apache::Template module, 240
Apache::Upload module, 225–226
Apache. See also mod_perl module

accessing request headers, 217–220
building and installing mod_perl, 194–197
child processes for, 184, 186
compatible versions of, 4–5
configuring mod_perl before using,

198–199
disabling unneeded modules, 195
executing mod_perl module with

Apache::Registry or Apache::PerlRun,
189–193, 202–205

forking, 186–187
getting information about server, 226–227
implementing SOAP server with, 148
Mason configurations with, 267–269

Index

339

methods for retrieving request values,
210–217

mod_cgi vs. mod_perl, 187, 201
prerequisites needed for mod_perl, 194
printing incoming client requests, 210–211
request handling in, 183–184
request procedures for, 185
setting response headers, 220–221
setting response status, 221–222
suEXEC feature, 73, 85
switching from mod_cgi to mod_perl,

199–200
unpacking source code for mod_perl

module, 194
working with request objects, 209–210
writing error logs, 227–229
writing to alternate log file, 38–39

apop() method, 111
args() method

accessing query string with, 212–213
casting into scalar, 213–214
iterating through arguments, 214–215
playing output into hash, 214, 216

arguments
calling Mason components with, 274–275
iterating through, 214–215

arithmetic operators, 293–296
attributes

LWP::UserAgent module, 96
XML::SAX parser, 178–179

auth() method, 111
authentication

LWP web site, 101–102
methods for e-mail, 111

authoritative DNS servers, 127–128
autodecrement operator (--), 308–310
autodispatch, 144
autohandlers, 277
autoincrement operator (++), 308–310

■B
banner() method, 110
bcc (blind carbon copies), 124–125
BEGIN block, 39
binary numbers, 287–288
binding parameters, 62–63
bitwise operators, 296
blind carbon copies (bcc), 124–125
<blink> tag, 270
BLOCK directives, 248–249
Boolean operators, 301–302
breaking out of loops, 333–334
browsers

configuring CGI::Carp fatal errors to, 36–38
controlling redirects, 99
duplicating browser object, 99–100

prompting on receipt of cookies, 17
sending fatal errors from Carp to, 30
using -dump option in Lynx, 104
viewing RSS feeds in, 153–154

■C
calling

host in Net::SMTP module, 120
Mason component with arguments, 274
National Weather Service SOAP service,

149–152
Net::Ping, 129
SOAP::Lite methods, 142–144
SOAP servers, 148–149

carbon copies (cc), 124–125
Carp module, 29–31

about CGI::Carp module and, 35
debugging with, 29
logging messages to file, 30–31

CASE conditionals, 253
case sensitivity

Perl variable names and, 313
when calling Net::Ping, 129

casting args() method into scalar, 213–214
cc (carbon copies), 124–125
CGI (Common Gateway Interface). See also

CGI module; CGI scripts
defined, 3

CGI module
about, 4
carrying values between forms, 24–26
creating browser cookies, 15–23
form elements in, 12–15
function-oriented programming methods,

5–7
HTML tags within, 11–12
method groupings for, 4
need for when compiling Mason, 265–266
object-oriented programming methods,

9–11
plug-ins, 256
printing name input using, 14
security issues for, 47
sending multiple cookies, 21–22
setting cookie expiration dates using, 20
time period abbreviations used in, 20
uploading files with, 77–83
version used in book, 4–5

CGI scripts
creating for function-oriented

development, 6–7
debugging and troubleshooting, 27–31
executing with Apache::Registry or

Apache::PerlRun, 189–193, 202–205
faster execution with mod_perl module, 188
file permissions and, 32

■INDEX340

mod_cgi vs. mod_perl execution of,
187–188, 201

output problems with forms using
mod_cgi vs. mod_perl, 190–193

permissions and system interaction, 73
printing content-type of uploaded file, 80
pros and cons of system interaction with,

26–27
security of, 31
taint mode, 32–33
using system processes within, 85
viewing environment variables in, 23–24

CGI::Carp module, 35–39
about Carp module and, 35
configuring fatal errors to display in

browsers, 36–38
security for, 47

cgi-lib.pl, 4
checking e-mail

Mail::Box for, 117–118
Net::POP3 for, 107–117

child processes
Apache request handling with, 184, 186
forking, 186–187

chomping, 240, 241–242
chunking, 286
classes of SOAP::Lite, 139
clearing

cookies, 16
namespaces, 189, 203

CLI (command-line interface), 70
closedir() function, 77
closing filehandles, 76
command-line interface (CLI), 70
comments, 242–243
Common Gateway Interface. See CGI
compiling

Mason, 265–267
options for mod_perl, 198

components, 270–274
defined, 254
get_year, 280
illustrated, 271
syntax of, 271–272
top-level, 264
using, 270–271

concatenation operator, 302
conditionals

IF-ELSIF-ELSE, 252–253
modified within Mason page, 272
short-circuited evaluation of, 325
SWITCH and CASE, 253
within Mason page, 271–272

configuring
Mason, 268
Mason and Apache, 267–269
mod_perl, 198–199, 206–207

connecting to database
database handles and, 52–53
steps for, 56
troubleshooting connections, 70

content event handlers for XML::SAX, 173,
174

content() method, 216
converting

between strings and numbers, 292–293
web sites to Mason, 233

cookie_jar attribute, 101
cookies, 15–23

checking data from, 34
creating with CGI module, 18
defined, 15
expiration dates for, 19–20
handling for LWP modules, 101
limitations for using, 16–17
parameters for, 16
prompting on receipt of, 17
reading, 224–225
retrieving, 18–19
secure, 223–224
sending multiple, 21–22
sending with Apache::Cookie, 223
setting, 17
working with Apache::Cookie class,

222–225
creating RSS channel, 159–162
credentials() method, 101–102

■D
Data::Dumper module, 168–170
data

checking cookie, 34
untainting, 33
using untrusted, 33–34

data source names (DSNs), 51–52
data types, 285–293

numbers, 285–288
setting in SOAP::Lite, 145–146
strings, 288–291

database drivers
DSNs corresponding to, 52
listing installed, 50–51

database handles
connecting to database with, 52–53, 56
defined, 50
disconnect() method, 57
do() method for, 62
quote() method for, 61–62

databases, 49–72
binding parameters, 62–63
connecting to, 56
creating HTML table, 67–69
database handles, 52–53
disconnecting from, 57

■INDEX 341

do() method for, 62
dumping query’s results, 60–61
error handling for, 54–55
executing queries, 57
flushing results of queries, 61
inserting data into, 63–65
listing installed database drivers, 50–51
listing valid DSNs, 51–52
outputting statements to HTML, 65–67
overview, 49
popular DBDs, 51
quote() method for dynamic statements

in, 61–62
restricting privileges for, 71
retrieving query results, 58–61
risks of stored credentials in, 70–71
statement handles, 53–54
troubleshooting connections for, 70
using DBI and DBD in Perl, 49

date plug-ins, 255–256
DBD (database dependent)

DBI and, 50
function of, 49
popular, 51

DBI (database independent)
about, 49–50
DBD and, 50
error handling for, 54–55
executing queries using, 57
loading and connecting to database, 56
sanitizing statements with quote()

method, 71
DBI module plug-ins, 256–257
debugging, 27–31

Carp module for, 29–31
checking logging when, 31
enabling SOAP::Lite trace, 140
helpful methods for, 55
Net::POP3 option for, 109–110
option for Net::SMTP, 121–122
printing SQL statements to aid, 70
RSS scripts, 158–159, 163

definite loops, 326
deleting e-mail and quitting, 116
delimiters

alternative string, 291
Mason, 273

dhandlers, 277
die() function

trapping errors with, 75
using, 86

directives, 246–255
BLOCK, 248–249
conditionals, 252–253
exception handling, 253–254
executing Perl blocks, 254–255
FOREACH, 249–252

IF-ELSIF-ELSE, 252–253
INCLUDE, 247
INSERT, 248
PRE_CHOMP and POST_CHOMP, 241–242
PROCESS, 247–248
SWITCH and CASE conditionals, 253
TRY-CATCH block, 253–254
WHILE, 252
working with, 246
WRAPPER, 248

directories
obtaining listings for, 77
specifying ttree source and destination,

239–240
disabling unneeded Apache modules, 195
disconnecting from database, 57
dispatch_to() method, 146
divide operator (/), 294
DNS (Domain Name System), 125–128

finding authoritative DNS servers,
127–128

performing simple lookup, 125–127
searching for MX records, 127

do...until loops, 331–333
do...while loops, 331–332
do() method, 62
documentation

Mason, 268
SOAP::Lite, 142
Template Toolkit, 257, 262

domain() method, 120
Domain Name System. See DNS
double greater-than (>>) character, 74
doubleit() method, 147
double-quoted strings, 288–290
doubler() method, 147, 148
downloading

Mason, 265
mod_perl source code, 194

driver handles, 50
DSNs (data source names), 51–52
dumping query’s results, 60–61

■E
e-mail

carbon and blind copies for, 124–125
checking with Net::POP3, 107–117
deleting and quitting, 116
Mail::Box for checking, 117–118
sending to multiple recipients, 124–125
sending with SMTP, 118–125
setting subject and header fields in

Net::SMTP, 123–124
%ENV hash, 23
environment variables

storing mail server in, 119
system interaction based on, 45–46

■INDEX342

using for mod_perl, 202
viewing in CGI script, 23–24

err() method, 55
error handling. See also Internal Server Error

messages
database, 54–55
displaying CGI::Carp fatal errors in

browser, 36–38
error event handlers, 173, 175
Internal Server Error messages, 27–31
printing error logs with Apache::Log,

228–229
SOAP::Lite, 144–145
trapping errors with die() function, 75
TRY-CATCH block, 253–254

errstr() method, 55
escape sequences, 284–285
executing

next iteration of loops, 334
Perl blocks, 254–255
queries, 57

exit() function, 318
expiration dates for cookies, 19–20
exponentiation operator (**), 295
expression modifier syntax, 324–325
eXtensible Markup Language. See XML

■F
file permissions for CGI scripts, 32
filehandles

closing, 76
default, 73–74
opening, 74–75
reading from, 75–76
retrieving messages with, 113
system processes as, 85
trapping errors with die(), 75
writing to, 76

files
printing and checking content type for,

80–82
protecting temporary, 83

finish() method, 61
floating-point numbers, 286
flushing results of queries, 61
footers for Mason, 279–280
for loops, 330
forcearray option

disabled when XMLin() called, 169
XML::Simple, 168, 170–171

FOREACH directives, 249–252
foreach loops, 330–331
forking child processes, 186–187
forms

carrying values between, 24–26
creating file-upload field within, 78–79
making contact, 43–44

output problems using mod_cgi vs.
mod_perl, 190–193

submitting web, 100–101
using form elements in CGI module, 12–15
using untrusted data from, 33–34

function-oriented programming methods,
5–9

creating CGI scripts for, 6–7
reviewing code, 7–9

functions
Carp output warning and error, 36
operators vs., 293

■G
get fh() method, 113
get() function

LWP::Simple module, 92, 93–94
retrieving web page with, 97–98
setting additional parameters for, 98

GET method, 100
getprint() function, 92, 93
getstore() function, 93, 94
get_year component, 280
global variables with mod_perl, 202
goto labels, 337
greater-than (>) character, 74

■H
handle() method, 147
handlers. See also PerlHandler

defined, 173
error event, 173, 175
Mason, 276–277
preloading from within Apache httpd.conf

file, 209
XML::SAX content event, 173, 174

handles. See also database handles;
filehandles; statement handles

filehandles for system interaction, 73–74
types of, 50

hash references, 54
head() function, 92, 94–95
header() function, 8
headers

accessing Apache request, 217–220
creating Mason, 279–280
sending additional header lines in URL

requests, 99
setting Apache response, 220–221
SOAP, 137–138
specifying ttree, 240

headers_in() method
accessing request headers, 217–220
printing user agent from output of,

219–220
viewing name_value pairs with,

218–219

■INDEX 343

hello option for Net::SMTP module, 120
Hello World example

function-oriented programming for,
5–7

object-oriented programming for, 9–11
here-documents, 291–292
hexadecimal numbers, 287–288
Host header, 91
host in Net::SMTP module, 120
host() method for Net::POP3, 109
HTML (Hypertext Markup Language)

adding tags in CGI module, 11–12
creating table for SQL output, 67–69
outputting SQL statements to, 65–67
removing tags from web page, 103–104

HTML::Mason, 44
HTTP (HyperText Transfer Protocol)

overview with LWP modules, 90–92
requests and responses, 91–92
status codes for, 92

HTTP_USER_AGENT variable, 45
hyperlink validity with HEAD method, 94
Hypertext Markup Language. See HTML
HyperText Transfer Protocol. See HTTP

■I
ICMP (Internet Control Message Protocol)

limitations of, 129
sending echo request, 130–131

if...else statements, 321
if...elsif...else statements, 321–324
if (param()), 14
if statements, 315–325

comparing strings, 318–319
if...else statements, 321
if...elsif...else statements, 321–324
short-circuited evaluation, 325
syntax of expression modifiers,

324–325
testing variable definitions, 320
unless statements, 324
using logical operators in, 320–321

IF-ELSIF-ELSE conditionals, 252–253
importing

SOAP::Lite to namespace, 139–140
Template Toolkit into namespaces, 240
XML::SAX to namespace, 176

INCLUDE directives, 247
indefinite loops, 326
infinite loops, 329
INSERT directives, 248
inserting data into databases, 63–65
installing

LWP modules, 89–90
Mason, 265–269
mod_perl module, 193–199

integers, 285–286

Internal Server Error messages
common types of, 27–28
illustrated, 27
tips for troubleshooting, 31
troubleshooting tools for, 28–31

Internet Control Message Protocol. See ICMP;
Net::Ping

interpolating
$ variables, 242
Template Toolkit INTERPOLATE option,

240, 242
variables, 313–315

is_success(), 93
iterator, 249

■K
key:value pairs, 91
KeyAttr option in XML::Simple, 171–172
keywords, 284

■L
labels for here-documents, 291
LAMP acronym, 49
last statement in loop construct,

336–337
less-than (<) character, 74
lexical variables, 310–312
literals, 285
localaddr() option, 121
localport() option, 121
logging

based on user agent, 229
Carp messages to file, 30–31
checking when debugging and

troubleshooting, 31
SQL queries, 70
writing to alternate log file, 38–39

logical operators, 320–321
login() method, 110–111
loop labels, 336–337
loop variable with FOREACH directive,

250
loops, 326–333

breaking out of, 333–334
definite vs. indefinite, 326
do...while and do...until, 331–332
executing next iteration of, 334
for, 330
foreach, 330–331
FOREACH directives, 249–252
goto labels, 337
infinite, 329
loop labels, 336–337
reexecuting, 335–336
until, 329–330
while, 326–328
WHILE directive, 252

■INDEX344

LWP modules, 89–105
defined, 89
functions of LWP::Simple module, 92–96
handling cookies, 101
handling proxies, 102–103
installing, 89–90
mirroring web sites, 102
overview of HTTP protocol for, 90–92
removing HTML tags from page, 103–104
retrieving web page with, 97–100
scripts using, 90
security with, 104–105
site authentication, 101–102
submitting web forms, 100–101

LWP::Simple module, 92–96
get() function, 93–94
head() function, 94–95
mirror() function, 95–96
retrieving RSS feed for parsing, 155

LWP::UserAgent module, 96–97
Lynx web browser, 104

■M
Mail::Box, 117–118
Mason

about, 263–264
arguments, 274–275
building web page, 278–279
compiling, 265–267
components, 270–274
configuring Apache and, 267–269
converting web sites to, 233
creating headers and footers, 279–280
delimiters, 273
documentation, 268
handlers, 276–277
installing, 265–269
modules required to install, 265
printing blinking tag from, 269–270
request objects, 276
return values, 275–276, 280–281
security, 281
subrequests, 278
syntax for, 269–278

method groupings for CGI module, 4
methods

finish(), 61
used for debugging, 55

mirror() function, 92, 95–96
mirroring web sites, 102
mod_cgi module

about, 183
mod_perl vs., 187
switching from mod_perl to, 199–200

mod_perl module, 44
about, 183
benefits and disadvantages of, 188

building and installing, 194–197
choosing compile options for, 198
configuring before running, 198–199
configuring for Apache::Registry, 206–207
downloading and unpacking source code,

193–194
environment variables with, 202
executing scripts with Apache::Registry or

Apache::PerlRun, 189–193, 202–205
mod_cgi vs., 187, 201
preloading modules, 207–209
prerequisites needed for, 194
printing incoming client request, 210–211
retrieving request values, 211–212
security with, 200, 229–230
setting Apache response headers, 220–221
switching from mod_cgi to, 199–200
tasks managed by, 188–189
using Apache::Template module to

process templates, 240
working with Apache::Cookie class, 222–225
working with Apache request object,

209–210
modulo operator, 296
multiple assignments of operators, 310
multiplication operator (*), 292, 294
my() variable, 310–312
MySQL

% wildcard host entry, 59
about, 51
DSN for, 51
retrieving query results listing users and

hosts, 58

■N
names

naming parameters in SOAP::Lite,
145–146

variable, 313
namespaces

clearing with Apache::PerlRun, 189, 203
importing Template Toolkit into, 240
mitigating security risks of shared,

229–230
National Weather Service

calling SOAP service, 149–152
consuming RSS feeds from, 154–155
retrieving weather watches with RSS, 162

Net:: tools, 107–134
case in module names, 129
checking DNS with Net::DNA module,

125–128
checking e-mail with Mail::Box, 117–118
Net::POP3, 107–117
security issues with, 133
sending e-mail with SMTP, 118–125
using Net::Ping, 128–132

■INDEX 345

Net::DNS module, 125–128
finding authoritative DNS servers, 127–128
performing simple DNS lookup, 125–127
searching for MX records, 127

Net::Ping
about, 128–129
case sensitivity when calling, 129
creating ping objects, 129–130
sending ICMP echo request, 130–131
sending TCP check, 132
using Time::HiRes module for accurate

times, 131
Net::POP3 module, 107–117

about, 107
banner() method for, 110
checking for mail receipt with login()

method, 110–111
creating POP3 object, 108
debug option, 109–110
deleting e-mail and quitting, 116
listing POP3 messages and sizes, 111–112
Net::SMTP vs., 125
obtaining unique identifier for message

with uidl() method, 113–114
ResvPort option for, 109
retrieving message headers with top()

method, 115
retrieving messages with, 113
security with, 133
setting host() method, 109
timeout value, 109
viewing number of messages with

popstat() method, 115–116
Net::SMTP module, 118–125

about, 43–44
calling host in, 120
creating SMTP object, 119–120
debug option for, 121–122
Net::POP3 vs., 125
sending mail to multiple recipients,

124–125
sending messages, 122–125
setting hello option, 120
setting subject and other header fields,

123–124
specifying localaddr(), localport(), and

port options, 121
timeout value for SMTP server, 121

new() method
for POP3 host, 108
SOAP::Lite, 140, 146

NOT (~) operator, 298
number data types, 285–288

binary, hexadecimal, and octal numbers,
287–288

floating-point numbers, 286
integers, 285–286

numbers
arithmetic operators, 293–296
checking for inequality, 299–301
comparing, 317–318
comparing for equality, 299
conversions from strings to, 304
converting between strings and, 292–293

■O
object-oriented programming, 9–11

creating script, 9–10
reviewing code, 10–11

objects
creating ping, 129–130
creating POP3, 108
creating SMTP, 119–120
duplicating browser, 99–100
Mason components, 264
Mason return, 276
setting up SOAP, 140–142

octal numbers, 287–288
ODBC (Open Database Connectivity), 51
open() function, 85
opendir() function, 77
opening

file errors when, 75
filehandles, 74–75

operators, 293–306
AND, 296–297, 321
arithmetic, 293–296
autoincrement and autodecrement,

308–310
bitwise, 296
Boolean, 301–302
checking numbers for inequality, 299–301
comparing numbers for equality, 299
functions vs., 293
multiple assignments of, 310
NOT, 298
numeric comparison, 317–318
OR, 297, 321
string, 302–306
string comparison, 305, 318
true/false conditions of, 316
truth and falsehood of, 298–299
XOR, 297

OR (|) operator, 297, 321
ord() function, 304
ownership file errors, 31

■P
param() method, 217
parameters

cookie, 16
defined, 62
Mason configuration, 268

params() method, 256

■INDEX346

parsers, 173
parsing

coding using XML::SAX module, 175–179
considerations about XML, 166
creating SAX2 handler package for, 176–177
Data::Dumper module for, 168–170
including attributes for XML::SAX parser,

178–179
parser methods for XML::SAX module, 173
RSS feeds, 155–157, 163
running XML::SAX parser, 177
security and XML, 180
tree-based, 166, 179–180
XML::SAX for, 172–179
XML::Simple for, 166–168

pass() method, 111
passwords

database security for stored, 70–71
setting up for POP3 servers, 111
testing user’s knowledge of, 319
web site, 101–102

Perl
converting between numbers and strings,

292–293
data types in, 285–293
escape sequences, 284–285
executing blocks of, 254–255
executing system processes from, 84–85
here-documents, 291–292
if statements, 315–325
keywords, 284
looping constructs, 326–333
modules handling RSS feeds, 153
numbers in, 285–288
numeric comparison operators, 317–318
operators, 293–306
script permissions and system interaction,

73
sending SMTP messages in, 122–125
statements and statement blocks, 284
strings, 288–291
testing true/false conditions, 316
using DBI and DBD in, 49
using templates with, 233
variables, 306–313
white space, 285
writing first program in, 283–285

PerlHandler
looping control constructs, 333–337
modifying CGI program to run with

mod_perl, 199–200
modules used with, 202
setting to Apache::PerlRun in

configuration file, 205
specifying how mod_perl serves content

with, 201–202
using Apache::Registry with, 206–207

PerlRunOnce option, 206
permissions

debugging and troubleshooting, 31
system interaction and, 73

ping objects, 129–130
pipe (|) character, 85, 86
placeholders. See parameters
plug-ins

about, 255
CGI module, 256
date, 255–256
DBI module, 256–257

POP3 (Post Office Protocol 3)
about Net::POP3 module, 107
banner() method for, 110
checking for mail receipt, 110–111
creating object for, 108
debug option, 109–110
deleting e-mail and quitting, 116
getting and printing messages, 112–113
listing messages and sizes, 111–112
obtaining unique identifier for message,

113–114
ResvPort option for, 109
retrieving message headers, 115
retrieving messages with, 113
security with, 133
setting host() method, 109
viewing number of messages, 115–116

popstat() method, 115–116
port() option, 121
ports

checking with TCP, 132
privileged, 184
setting local POP3 server, 109
specifying SMTP server local and remote,

121
POST method, 100
Post Office Protocol version 3. See POP3
POST_CHOMP option, 240
PostgreSQL, 51
PRE_CHOMP option, 240
preloading Apache::DBI modules, 207–208
prepare() method, 54
PrintError attribute, 54–55
printing

Apache incoming client request, 210–211
authority records for DNS servers, 128
content-type of uploaded file, 80
error logs with Apache::Log, 228–229
information about Apache server, 226–227
ISBN search results, 143–144
MX records, 127
name input using CGI module, 14
number of messages with Mail::Box, 117–118
POP3 messages, 112–113
query string, 212

■INDEX 347

record with Net::DNS module, 126
RSS feed for debugging, 155–156
subject lines, 115
user agent from headers_in() output, 219–220

privacy and cookies, 15
privileged ports, 184
privileges, restricting database, 71
PROCESS directives, 247–248
protecting temporary files, 83
proxies for LWP modules, 102–103
proxy() method, 140–141, 149

■Q
queries

dumping results of, 60–61
executing, 57
flushing results of, 61
logging SQL, 70
placing data from in HTML table, 68–69
pushing results into array to find wildcard

hosts, 59–60
retrieving results of, 58–61

quitting e-mail, 116
quote() method, 61–62, 71
quotes

with q// and qq//, 290–291
single- vs. double-quoted strings, 288–290

qw() operator, 8

■R
RaiseError attribute, 54–55
RDF Site Summary. See RSS
reading

cookies, 224–225
from filehandles, 75–76

reexecuting loops, 335–336
repetition operator, 302–303
request lines, 91
request objects

accessing incoming client request,
210–211

Mason, 276
working with Apache, 209–210

_request() method, 210, 211
requests

accessing incoming client, 210–211
accessing query strings in, 212–213
Apache request handling with child

processes, 184, 186
printing query string included in, 212
request handling in Apache, 183–184, 185
sending additional header lines in URL, 99
sending echo, 130–131
sending ping, 130
working with Apache request objects,

209–210
reset() method, 123

response headers
methods for, 221
setting Apache, 220–221
setting response status, 221–222

responses to HTTP requests, 91–92
result() method in SOAP::Lite, 143
ResvPort option for Net::POP3, 109
retrieving

cookies, 18–19
index ID, 64–65
messages with Net::POP3, 113
multiple cookies, 22
request values, 211–217
values for POST requests, 216
web pages, 96, 97–100

return values
Mason, 275–276
using, 280–281

reviewing
function-oriented program code, 7–9
object-oriented program code, 10–11

RSS (Rich Site Summary)
creating RSS channel, 159–162
defined, 153
illustrated, 154
parsing RSS feeds, 155–157, 163
Perl modules handling, 153
reading with XML::RSS, 154–155
requests for updates, 157
security with, 162
versions of, 153, 159

run quotes, 84–85, 86

■S
sample listings

adding error type to CATCH block, 254
calling Mason component with

arguments, 274
calling National Weather Service SOAP

service, 150–152
calling SOAP servers, 148–149
CC method with Net::SMTP, 124–125
checking for acceptable file types, 81–82
code to accept input with CGI module, 12
conditional within Mason page, 271–272
creating cookies using CGI module, 18
creating HTML table, 67–69
creating ttree run control file, 238–239
creating web page with integrated SQL

data, 65–67
debugging RSS feed script, 158–159
determining user agent and printing

appropriate result, 45–46
error log printing with Apache::Log, 228
FOREACH directive, 249
getting and printing POP3 messages,

112–113

■INDEX348

get_year component, 280
handler for parsing XML, 176–177
Hello World, 6, 9
implementing BookInfo code in SOAP,

142–143
implementing server package for SOAP

call, 147
implementing SOAP listener, 147–148
initial RSS example, 157
inserting data into database, 64
iterating through arguments, 214–215
iterating through hashed data structure

with FOREACH, 251
listing installed database drivers, 50–51
listing POP3 messages, 111–112
listing valid DSNs, 51–52
logging based on user agent, 229
logging Carp messages to file, 30–31
looking at parameters with param()

method, 217
loop variable with FOREACH directive, 250
Mail::Box for printing number of

messages, 117
making string without escape characters

using uri_unescape, 42–43
message and subject line printing in

Mail::Box, 117–118
message ID printing, 114
MX record printing, 127
name input printed using CGI module, 14
options available with ttree, 236–237
preloading Apache::DBI, 207–208
printing Apache incoming client request,

210–211
printing blinking tag from Mason, 269–270
printing content-type of uploaded file, 80
printing information about Apache server,

226–227
printing ISBN search results, 143–144
printing record with Net::DNS module, 126
pushing query results into array, 59–60
retrieving cookies with Apache::Cookie,

224–225
retrieving index ID, 64–65
retrieving messages with Net::POP3, 113
retrieving multiple cookies, 22
retrieving query results, 58
retrieving weather watches with RSS, 162
safe string example with uri_escape, 40–41
sample project configuration file, 259
sending cookie with Apache::Cookie, 223
sending mail to multiple recipients, 124
sending ping request, 130
sending secure cookie, 223–224
setting cookie, 17
setting cookie expiration dates, 19, 20
setting up SOAP objects, 141

slightly modified conditional within
Mason page, 272

subject line printing, 115
using Carp for debugging, 29
using content() method, 216
using HTML::FormatText to retrieve text

from page, 103–104
using TCP for port check, 132
using Time::HiRes module for accurate

times, 131
values carried between pages, 25
viewing name_value pairs with

headers_in() method, 218–219
writing to alternate log file, 39

sanitizing database statements, 71
scalar variables, 306
scalars

about, 285
strings, 288–291

screen scraping, 97
scripts using LWP modules, 90
secure cookies, 16, 22–23, 223–224
security

CGI modules and, 31, 47
checking data from cookies, 34
gaining system access through

unprivileged users, 184
including use strict; statement, 33
LWP modules and, 104–105
Mason, 281
mod_perl and, 200, 229–230
Net:: tools and, 133
risks of stored credentials in databases,

70–71
RSS and, 162
sanitizing statements with quote()

method, 71
SOAP web service, 152
system interaction and, 85–86
Template Toolkit issues, 262
unnecessary database privileges, 71
using untrusted form data, 33–34
XML parsing and, 180

semicolon (;), 8
sending

e-mail with SMTP, 118–125
multiple cookies, 21–22

servers
Apache::Constants for status messages,

221–222
calling SOAP, 148–149
finding authoritative DNS, 127–128
getting information about Apache, 226–227
implementing SOAP server with Apache, 148
setting local POP3 ports for, 109
specifying SMTP local and remote ports

for, 121

■INDEX 349

storing mail server in environment
variable, 119

surviving Slashdot effect, 187
service() method, 141
set_message() function, 37–38
shebang line (#!), 202
shell redirect characters, 74
short-circuited evaluation, 325
Simple Mail Transfer Protocol. See SMTP
Simple Object Access Protocol. See SOAP
single- vs. double-quoted strings, 288–290
Slashdot web site, 187
SMTP (Simple Mail Transfer Protocol),

118–125
creating SMTP object, 119–120
security with, 133
sending messages in Perl, 122–125
setting hello option, 120
setting subject and other header fields,

123–124
specifying localaddr(), localport(), and

port options, 121
timeout value for server, 121

SOAP (Simple Object Access Protocol)
about, 137–138
about SOAP::Lite, 139
defined, 137
setting up SOAP objects, 140–142
web sites with SOAP interfaces, 139

SOAP listener, 146–148
SOAP::Lite

about, 139
calling methods, 142–144
calling National Weather Service SOAP

service, 149–152
calling SOAP server, 148–149
creating SOAP listener, 146–148
documentation for, 142
error handling, 144–145
importing and debugging, 139–140
printing ISBN search results, 143–144
security for SOAP web services, 152
setting types and names, 145–146
setting up SOAP object in, 140–142
traceable events in, 140
using autodispatch, 144

SOAP::Transport::HTTP module, 148
SOAP-based web services, 137–152
special variables, 313
SQL (Structured Query Language)

creating HTML table for output, 67–69
logging queries, 70
outputting statements to HTML,

65–67
:standard group, 6
standards for cookies, 17
state() method, 55

statement handles
about, 53–54
defined, 50
using binding parameters in, 63

statements
sanitizing with quote() method, 71
statement blocks and, 284

status codes in HTTP, 92
status line, 91
STDERR filehandle, 73–74, 75
STDIN filehandle, 73–74
STDOUT filehandle, 73–74
stream-based parsing

about, 165, 166
XML::SAX for, 172

string operators, 302–306
strings, 288–291

alternative delimiters for, 291
comparing, 318–319
converting between numbers and,

292–293
creating quotes with q// and qq//,

290–291
single- vs. double-quoted, 288–290
string comparison operators, 305, 318
string value comparisons, 304–306

submitting web forms, 100–101
subrequests, 278
suEXEC feature, 73, 85
SWITCH conditionals, 253
Sybase, 51
syntax

expression modifier, 324–325
if statement, 315
Mason, 269–278
Mason component, 271–272
operation, 308
request line, 91
Template Toolkit, 234, 240–257
while loop, 326

syntax checks, 28
system() function, 84, 85, 86
system interaction, 73–86

based on environment variables,
45–46

with CGI scripts, 26–27
closing filehandles, 76
defined, 73
executing system processes from Perl,

84–85
filehandles for, 73–74
obtaining directory listings, 77
opening filehandles, 74–75
Perl script permissions and, 73
protecting temporary files, 83
security considerations with, 85–86
trapping errors with die(), 75

■INDEX350

uploading files with CGI.pm, 77–83
working with system processes, 83–85
writing to filehandles, 76
-X file tests, 76–77

system processes. See also system interaction
about spawning external processes, 83–84,

86
executing from Perl, 84–85
as filehandles, 85
overview, 86
run quotes for executing, 84–85, 86
using within CGI script, 85

■T
\t escape sequence, 288
table() method, 67, 68
tags

HTML tags within CGI module, 11–12
printing blinking, 269–270
removing HTML tags from web page,

103–104
spaces within comment start, 243
Template Toolkit, 243–244

taint (-T) mode, 32–33, 202
TCP (Transmission Control Protocol), 128, 132
Template Toolkit. See also directives

about, 234–235
adding comments in templates, 242–243
building web sites with, 257, 259–261
chomping, 240, 241–242
comment processing with spaces in start

tag, 242–243
creating web site configuration file with,

257–259
defining and setting variables, 244–245
directives, 246–255
documentation for, 257, 262
INTERPOLATE option, 240, 242
mathematical operations on variables,

245–246
plug-ins, 255–257
security issues for, 262
syntax, 234, 240–257
tags available in, 243–244
updating web sites with ttree program,

236–240
using as module in Perl programs, 240
using tpage program in, 235–236
virtual methods, 246

templates, 233–262. See also directives
about Template Toolkit, 234–235
comment processing with spaces in start

tag, 242–243
defining and setting variables for, 244–245
mathematical operations on variables,

245–246
processing with tpage program, 235–236

updating web sites with ttree program,
236–240

using with Perl, 233
working with directives, 246

text editors, 283
Time::HiRes module, 131
time period abbreviations, 20
timeouts

setting, 98–99
setting Net::POP3, 109
setting SMTP server, 121

tokens, 165
top() method, 115
top-level components, 264
tpage program

changing tag styles for, 243–244
using, 235–236

tracing in SOAP::Lite, 139–140
Transmission Control Protocol (TCP), 128,

132
tree parsing, 166, 179–180
troubleshooting database connections, 70
troubleshooting tools, 28–31

Carp module, 29–31
syntax checks, 28
-w option, 28

truth and falsehood
operator, 298–299
testing conditions, 316

TRY-CATCH block, 253–254
-T option, 32–33
ttree program, 236–240

changing tag styles for, 243–244
creating run control file for, 237–239
options available with, 236–237
options for, 239–240

.ttreerc file, 237–238

■U
UDP (User Datagram Protocol), 128
uidl() method, 113–114
unless statements, 324
unpacking Apache source code, 194
until loops, 329–330
upload() function, 78–79
uploadInfo() function, 80
uploading files

with Apache::Upload module, 225–226
with CGI.pm, 77–83

URI::Escape module, 39–43
uri() method, 141, 149
uri_escape() function, 40–42
URIs (Universal Resource Identifiers), 39–40
use strict; statement, 33, 201
user agent values

determining browser with, 45–46
improper uses of, 97

■INDEX 351

logging based on, 229
printing from headers_in() output,

219–220
User Datagram Protocol (UDP), 128
user() method, 111
usernames

database security for stored, 70–71
setting up for POP3 servers, 111

■V
values

comparing string, 304–306
viewing variable, 313–315

variables, 306–313
about, 306
autoincrement and autodecrement,

308–310
checking tainted use of, 33
declaring with leading underscore, 245
defined, 285
defining and setting for templates,

244–245
FOREACH directive with loop, 250
interpolating, 313–315
interpolating $, 242
lexical, 310–312
mathematical operations on template,

245–246
modifying, 306–308
names of, 313
special, 313
syntax for operating and assigning at once,

308
testing definitions with if statements, 320
virtual methods for manipulating, 246

verbose output, 28
versions

CGI module, 4–5
RSS, 153, 159

viewing
environment variables in CGI script, 23–24
name_value pairs with headers_in()

method, 218–219
virtual methods, 246

■W
warnings on shebang line, 202
web forms. See forms
web servers

setting timeouts, 98–99
support for HEAD method by, 94

Web Service Definition Language (WSDL),
138

web sites. See also templates
building from template, 257, 259–261
building web page, 278–279
controlling browser redirects, 99

converting to Mason, 233
creating site configuration file with

Template Toolkit, 257–259
Mason for, 263–264
mirroring, 102
password and username authentication

for, 101–102
removing HTML tags from page, 103–104
sending additional header lines to pages,

99
setting additional parameters for get()

function, 98
setting web page timeouts, 98–99
SOAP interfaces used by, 139
updating with ttree program, 236–240

while <STDIN> behavior, 327–328
WHILE directives, 252
while loops

about, 326–327
infinite, 329
using while as statement modifier,

332–333
while <STDIN> behavior, 327–328

white space in Perl programs, 285
wildcard hosts (%)

defined, 59
pushing query results into array to find,

59–60
WRAPPER directives, 248
writing

error logs, 227–229
to filehandles, 76
first Perl program, 283–285
RSS, 159–162

WSDL (Web Service Definition Language), 138
-w option, 28

■X
-X file tests, 76–77
XML (eXtensible Markup Language). See also

SOAP::Lite; XML::RSS module
creating SAX2 handler package for parsing,

176–177
parsing considerations in, 166
security with parsing, 180
SOAP and, 137
stream-based parsing, 165–166
tree-based parsing, 166, 179–180
XML::SAX for parsing, 172–179
XML::Simple for parsing, 166–168

XML::Grove, 179
XML::LibXML::SAX::Parser, 172
XML::Parser, 179
XML::RSS::Feed module, 163
XML::RSS module

debugging RSS scripts, 158–159, 163
parsing RSS feeds, 155–157, 163

■INDEX352

reading RSS with, 154–155
security with, 162
versions of RSS, 153, 159
writing RSS with, 159–162

XML::SAX::PurePerl, 172
XML::SAX module, 172–179

coding main program for parsing, 176
coding parsing routine using, 175–179
content event handlers, 173, 174
creating handler package, 176–177
error event handlers, 173, 175
including attributes for parser, 178–179
listing parsers on system for, 172–173
parser methods for, 173
running parser, 177

security and XML parsing, 180
tree-based parsing, 179–180

XML::Simple, 166–168
Data::Dumper module for parsing with,

168–170
forcearray option in, 168, 170–171
KeyAttr option in, 171–172
parsing with, 167–168
subroutines for, 166

XML::SimpleObject, 179
XML::TreeBuilder, 179
XML::Twig, 179–180
XMLin() subroutine, 166, 167, 168, 169
XMLout() subroutine, 166
XOR (^) operator, 297

■INDEX 353

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	PART 1: CGI Development with Perl
	CHAPTER 1: The CGI Module
	An Overview of CGI
	What You Need for This Chapter
	Hello World, CGI Style
	A Closer Look at the CGI.pm Functions
	Environment Variables
	Interaction with the System
	Debugging and Troubleshooting
	Security Considerations with CGI Programs
	Summary

	CHAPTER 2: Popular CGI Modules
	Integration with Other Modules
	Interaction Based on Environment Variables
	Security Considerations with CGI Modules
	Summary

	CHAPTER 3: Databases and Perl
	Interacting with a Database
	Using SQL Databases with the DBI
	Interacting with the Web
	Troubleshooting Database Interaction
	Security Considerations with Data Access
	Summary

	CHAPTER 4: System Interaction
	Perl Scripts and the Operating System
	Working with Filehandles
	Uploading Files with CGI.pm
	Working with System Processes
	Security Considerations with System Interaction
	Summary

	PART 2: Internet Interaction with LWP and Net:: Tools
	CHAPTER 5: LWP Modules
	Getting Started with the LWP
	HTTP from 29,999 Feet
	Keeping It Simple with LWP::Simple
	Getting More Functionality with LWP::UserAgent
	Using the LWP
	Removing HTML Tags from a Page
	Security Considerations with the LWP
	Summary

	CHAPTER 6: Net:: Tools
	Checking E-Mail with Net::POP3
	Checking E-Mail with Mail::Box
	Sending E-Mail with SMTP
	Checking DNS with Net::DNS
	Sending a Ping with Net::Ping
	Security Considerations with Net:: Modules
	Summary

	PART 3: XML and RSS
	CHAPTER 7: SOAP-Based Web Services
	A Quick SOAP Primer
	SOAP Meets Perl: SOAP::Lite
	Creating a SOAP Listener
	Consuming a SOAP Web Service
	Security Considerations with SOAP Web Services
	Summary

	CHAPTER 8: Perl and RSS
	RSS: Versioning Fun
	Reading RSS with XML::RSS
	Writing RSS with XML::RSS
	Security Considerations with RSS
	Summary

	CHAPTER 9: XML Parsing with Perl
	XML Parsing Methods
	XML Parsing Considerations
	Parsing XML with XML::Simple
	Parsing XML with XML::SAX
	Using Tree-Based Parsing
	Security Considerations with XML Parsing
	Summary

	PART 4: Performance Enhancement with mod_perl
	CHAPTER 10: Apache and mod_perl
	How Apache Handles Requests
	mod_cgi vs. mod_perl
	Apache::Registry vs. Apache::PerlRun
	mod_perl Installation
	From mod_cgi to mod_perl
	Security Considerations with mod_perl
	Summary

	CHAPTER 11: Development with mod_perl
	Thinking in mod_perl
	Preloading Perl Modules
	Working with the Apache Request Object
	Working with the Apache Server
	Security Considerations with mod_perl, Revisited
	Summary

	PART 5: Creating Web Templates
	CHAPTER 12: The Template Toolkit
	Perl and Templates
	Template Toolkit Introduction
	Template Toolkit Syntax
	Building a Web Site with Template::Toolkit
	Security Considerations
	Summary

	CHAPTER 13: Perl Web Sites with Mason
	Introducing Mason
	Installing Mason
	Mason Syntax
	Building a Web Site with Mason
	Security Considerations with Mason
	Summary

	APPENDIX: Perl Basics
	Our First Perl Program
	Keywords
	Statements and Statement Blocks
	Escape Sequences
	White Space

	Types of Data
	Numbers
	Strings
	Here-Documents
	Converting Between Numbers and Strings

	Operators
	Numeric Operators
	String Operators

	Variables
	Modifying a Variable
	Operating and Assigning at Once
	Autoincrement and Autodecrement
	Multiple Assignments
	Scoping
	Variable Names

	Variable Interpolation
	The if Statement
	Operators Revisited
	Multiple Choice: if … else
	The unless Statement
	Expression Modifiers
	Using Short-Circuited Evaluation

	Looping Constructs
	The while Loop
	while (<STDIN>)
	Infinite Loops
	Looping Until
	The for Loop
	The foreach Loop
	do .. while and do .. until

	Loop Control Constructs
	Breaking Out
	Going On to the Next
	Reexecuting the Loop
	Loop Labels
	goto

	Summary

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

